دوره 9، شماره 2 - ( 1403 )                   دوره 9 شماره 2 صفحات 85-67 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rasoul Panah S, Kolahdoozha A, Mohammadi H. Immunological Diagnostics for Infertility: Cellular, Molecular, and Genetic Comprehensive Review. SJMR 2024; 9 (2) : 3
URL: http://saremjrm.com/article-1-332-fa.html
رسول پناه سارا، کلاهدوزها علی، محمدی حامد. تشخیص ایمونولوژیک ناباروری: بررسی جامع سلولی، مولکولی و ژنتیکی. مجله تحقيقات پزشكي صارم. 1403; 9 (2) :67-85

URL: http://saremjrm.com/article-1-332-fa.html


1- مرکز تحقیقات بیماری‌های غیرواگیر، دانشگاه علوم پزشکی البرز، کرج، ایران
چکیده:   (1210 مشاهده)
بارداری مشتمل بر وضعیت ایمنی منحصر به فردی است که طی آن زنان باردار مکانیسم های تحمل را برای جلوگیری از پس زدن جنین ایجاد می کنند. مکانیسم‌های مختلفی سیستم ایمنی مادر را تعدیل می‌کنند تا از این پس زدن جلوگیری کنند. علی‌رغم این مکانیسم‌ها، ناباروری تقریباً 12-8 درصد از زوج‌های در سن باروری را تحت تأثیر قرار می‌دهد، به‌ویژه آنهایی که شکست مکرر لانه‌گزینی و سقط مکرر بارداری را تجربه می‌کنند. تکنیک های کمک باروری در دهه های اخیر به طور قابل توجهی پیشرفت کرده اند، اما میزان موفقیت نسبتاً پایین باقی مانده است. پروفایل ایمنی آندومتر در درک ناباروری بسیار مهم است و یک ریزمحیط متمایز در دوران بارداری را تشکیل می دهد. در نتیجه، تحقیقات بر روی تجزیه و تحلیل نشانگرهای زیستی خاص، سایتوکین ها و شناسایی اختلالات سیستم ایمنی در این زمینه متمرکز شده است. هدف این رویکرد ارائه بینش برای توسعه درمان های شخصی است. این مطالعه با هدف فراهم آوردن آگاهی در زمینه نشانگرهای ایمنی سلولی، نشانگرهای مولکولی/ژنتیکی در مطالعات آندومتر و اتوآنتی بادی‌های دخیل در ناباروری صورت پذیرفته است.
شماره‌ی مقاله: 3
واژه‌های کلیدی: ناباروری، تشخیص، ایمونولوژی، ژنتیک
متن کامل [PDF 1204 kb]   (829 دریافت)    
نوع مقاله: مروری تحلیلی | موضوع مقاله: ناباروری
دریافت: 1403/5/10 | پذیرش: 1403/5/25 | انتشار: 1403/9/21

فهرست منابع
1. Woolner AM, Raja EA, Bhattacharya S, Danielian P, Bhattacharya S. Inherited susceptibility to miscarriage: a nested case-control study of 31,565 women from an intergenerational cohort. American Journal of Obstetrics and Gynecology. 2020;222(2):168. e1-. e8. [DOI:10.1016/j.ajog.2019.08.013] [PMID]
2. RPL EGGo, Bender Atik R, Christiansen OB, Elson J, Kolte AM, Lewis S, et al. ESHRE guideline: recurrent pregnancy loss. Human reproduction open. 2018;2018(2):hoy004. [DOI:10.1093/hropen/hoy004] [PMID] []
3. Ford HB, Schust DJ. Recurrent pregnancy loss: etiology, diagnosis, and therapy. Reviews in obstetrics and gynecology. 2009;2(2):76.
4. Mohamad BN, Alsakkal G. The effect of consanguinity on reproductive outcomes in Maternity Teaching Hospital in Erbil city. AMJ (Advanced Medical Journal) is the scientific journal of Kurdistan Higher Council of Medical Specialties. 2023;8(1):54-61. [DOI:10.56056/amj.2023.198]
5. Tasadduq R, Ajmal L, Batool F, Zafar T, Babar A, Riasat A, Shakoori A-R. Interplay of immune components and their association with recurrent pregnancy loss. Human Immunology. 2021;82(3):162-9. [DOI:10.1016/j.humimm.2021.01.013] [PMID]
6. Medicine PCotASfR. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertility and sterility. 2012;98(5):1103-11. [DOI:10.1016/j.fertnstert.2012.06.048] [PMID]
7. Daya S, Stephenson MD. Frequency of factors associated with habitual abortion in 197 couples. Fertility and sterility. 1996;66(1):24-9. [DOI:10.1016/S0015-0282(16)58382-4]
8. Norman RJ. Immunology in reproductive medicine: is current testing and therapy justified by science? Fertility and Sterility. 2022;117(6):1105-6. [DOI:10.1016/j.fertnstert.2022.04.018] [PMID]
9. Bortolotti D, Gentili V, Caselli E, Sicolo M, Soffritti I, D'Accolti M, et al. DNA sensors' signaling in NK cells during HHV-6A, HHV-6B and HHV-7 infection. Frontiers in Microbiology. 2020;11:226. [DOI:10.3389/fmicb.2020.00226] [PMID] []
10. Kwak‐Kim J, Gilman‐Sachs A. Clinical implication of natural killer cells and reproduction. American journal of reproductive immunology. 2008;59(5):388-400. [DOI:10.1111/j.1600-0897.2008.00596.x] [PMID]
11. Donoghue J, Paiva P, Teh W, Cann L, Nowell C, Rees H, et al. Endometrial uNK cell counts do not predict successful implantation in an IVF population. Human Reproduction. 2019;34(12):2456-66. [DOI:10.1093/humrep/dez194] [PMID]
12. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. The Journal of experimental medicine. 2003;198(8):1201-12. [DOI:10.1084/jem.20030305] [PMID] []
13. Moffett A, Shreeve N. First do no harm: uterine natural killer (NK) cells in assisted reproduction. Human reproduction. 2015;30(7):1519-25. [DOI:10.1093/humrep/dev098] [PMID] []
14. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends in immunology. 2001;22(11):633-40. [DOI:10.1016/S1471-4906(01)02060-9] [PMID]
15. King A, Jokhi P, Burrows TD, Gardner L, Sharkey A, Lore Y. Functions of human decidual NK cells. American Journal of Reproductive Immunology. 1996;35(3):258-60. [DOI:10.1111/j.1600-0897.1996.tb00041.x] [PMID]
16. Sargent I, Borzychowski A, Redman C. NK cells and pre-eclampsia. Journal of reproductive immunology. 2007;76(1-2):40-4. [DOI:10.1016/j.jri.2007.03.009] [PMID]
17. Kwak‐Kim J, Bao S, Lee SK, Kim JW, Gilman‐Sachs A. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress. American journal of reproductive immunology. 2014;72(2):129-40. [DOI:10.1111/aji.12234] [PMID]
18. Arck PC, Hecher K. Fetomaternal immune cross-talk and its consequences for maternal and offspring's health. Nature medicine. 2013;19(5):548-56. [DOI:10.1038/nm.3160] [PMID]
19. Moffett A, Colucci F. Co‐evolution of NK receptors and HLA ligands in humans is driven by reproduction. Immunological reviews. 2015;267(1):283-97. [DOI:10.1111/imr.12323] [PMID]
20. Hiby S, Regan L, Lo W, Farrell L, Carrington M, Moffett A. Association of maternal killer-cell immunoglobulin-like receptors and parental HLA-C genotypes with recurrent miscarriage. Human reproduction. 2008;23(4):972-6. [DOI:10.1093/humrep/den011] [PMID]
21. McLaren PJ, Carrington M. The impact of host genetic variation on infection with HIV-1. Nature immunology. 2015;16(6):577-83. [DOI:10.1038/ni.3147] [PMID] []
22. Ahn R, Moslehi H, Martin M, Abad‐Santos M, Bowcock A, Carrington M, Liao W. Inhibitory KIR3DL1 alleles are associated with psoriasis. British Journal of Dermatology. 2016;174(2):449-51. https://doi.org/10.1111/bjd.14081 [DOI:10.1046/j.1365-2133.2000.03682.x] [PMID] []
23. Mancusi A, Ruggeri L, Urbani E, Pierini A, Massei MS, Carotti A, et al. Haploidentical hematopoietic transplantation from KIR ligand-mismatched donors with activating KIRs reduces nonrelapse mortality. Blood, The Journal of the American Society of Hematology. 2015;125(20):3173-82. [DOI:10.1182/blood-2014-09-599993] [PMID]
24. Hollenbach JA, Pando MJ, Caillier SJ, Gourraud P-A, Oksenberg JR. The killer immunoglobulin-like receptor KIR3DL1 in combination with HLA-Bw4 is protective against multiple sclerosis in African Americans. Genes & Immunity. 2016;17(3):199-202. [DOI:10.1038/gene.2016.5] [PMID] []
25. Yang X, Yang E, Wang W-J, He Q, Jubiz G, Katukurundage D, et al. Decreased HLA-C1 alleles in couples of KIR2DL2 positive women with recurrent pregnancy loss. Journal of Reproductive Immunology. 2020;142:103186. [DOI:10.1016/j.jri.2020.103186] [PMID]
26. Dambaeva SV, Lee DH, Sung N, Chen CY, Bao S, Gilman‐Sachs A, et al. Recurrent pregnancy loss in women with killer cell immunoglobulin‐like receptor KIR2DS1 is associated with an increased HLA‐C2 allelic frequency. American journal of reproductive immunology. 2016;75(2):94-103. [DOI:10.1111/aji.12453] [PMID]
27. Alecsandru D, Garrido N, Vicario J, Barrio A, Aparicio P, Requena A, García-Velasco J. Maternal KIR haplotype influences live birth rate after double embryo transfer in IVF cycles in patients with recurrent miscarriages and implantation failure. Human reproduction. 2014;29(12):2637-43. [DOI:10.1093/humrep/deu251] [PMID]
28. Quenby S, Bates M, Doig T, Brewster J, Lewis-Jones D, Johnson P, Vince G. Pre-implantation endometrial leukocytes in women with recurrent miscarriage. Human reproduction. 1999;14(9):2386-91. [DOI:10.1093/humrep/14.9.2386] [PMID]
29. Tuckerman E, Laird S, Prakash A, Li T. Prognostic value of the measurement of uterine natural killer cells in the endometrium of women with recurrent miscarriage. Human reproduction. 2007;22(8):2208-13. [DOI:10.1093/humrep/dem141] [PMID]
30. Clifford K, Flanagan A, Regan L. Endometrial CD56+ natural killer cells in women with recurrent miscarriage: a histomorphometric study. Human reproduction. 1999;14(11):2727-30. [DOI:10.1093/humrep/14.11.2727] [PMID]
31. Yang X, Yang Y, Yuan Y, Liu L, Meng T. The roles of uterine natural killer (NK) cells and KIR/HLA-C combination in the development of preeclampsia: a systematic review. BioMed research international. 2020;2020. [DOI:10.1155/2020/4808072] [PMID] []
32. Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T‐cell paradigm in pregnancy. American journal of reproductive immunology. 2010;63(6):601-10. [DOI:10.1111/j.1600-0897.2010.00852.x] [PMID]
33. Bashiri A, Halper KI, Orvieto R. Recurrent Implantation Failure-update overview on etiology, diagnosis, treatment and future directions. Reproductive Biology and Endocrinology. 2018;16:1-18. [DOI:10.1186/s12958-018-0414-2] [PMID] []
34. Ünüvar S, Tanrıverdi Z, editors. Neopterin And Recurrent Spontaneous Aborti̇on (Rsa): The Effect Of Cellular Immune System Activation On Subsequent Pregnancy. CBU International Conference Proceedings; 2017.
35. Raghupathy R, Makhseed M, Azizieh F, Omu A, Gupta M, Farhat R. Pregnancy and obstetrics. Cytokine production by maternal lymphocytes during normal human pregnancy and in unexplained recurrent spontaneous abortion. Human Reproduction. 2000;15(3). [DOI:10.1093/humrep/15.3.713] [PMID]
36. Lee SK, Na BJ, Kim JY, Hur SE, Lee M, Gilman‐Sachs A, Kwak‐Kim J. Determination of clinical cellular immune markers in women with recurrent pregnancy loss. American journal of reproductive immunology. 2013;70(5):398-411. [DOI:10.1111/aji.12137] [PMID]
37. Giannubilo SR, Landi B, Pozzi V, Sartini D, Cecati M, Stortoni P, et al. The involvement of inflammatory cytokines in the pathogenesis of recurrent miscarriage. Cytokine. 2012;58(1):50-6. [DOI:10.1016/j.cyto.2011.12.019] [PMID]
38. Liang P-Y, Diao L-H, Huang C-Y, Lian R-C, Chen X, Li G-G, et al. The pro-inflammatory and anti-inflammatory cytokine profile in peripheral blood of women with recurrent implantation failure. Reproductive biomedicine online. 2015;31(6):823-6. [DOI:10.1016/j.rbmo.2015.08.009] [PMID]
39. Todt JC, Yang Y, Lei J, Lauria MR, Sorokin Y, Cotton DB, Yelian FD. Effects of tumor necrosis factor‐alpha on human trophoblast cell adhesion and motility. American Journal of Reproductive Immunology. 1996;36(2):65-71. [DOI:10.1111/j.1600-0897.1996.tb00141.x] [PMID]
40. Yui J, Garcia-Lloret M, Wegmann Tea, Guilbert L. Cytotoxicity of tumour necrosis factor-alpha and gamma-interferon against primary human placental trophoblasts. Placenta. 1994;15(8):819-35. [DOI:10.1016/S0143-4004(05)80184-5] [PMID]
41. Sencan H, Keskin N, Khatib G. The role of neopterin and anti-Mullerian hormone in unexplained recurrent pregnancy loss-A case-control study. Journal of Obstetrics and Gynaecology. 2019;39(7):996-9. [DOI:10.1080/01443615.2019.1586850] [PMID]
42. Wang Z, Dong M, Chu H, He J. Increased serum levels of neopterin and soluble interleukin-2 receptor in intrahepatic cholestasis of pregnancy. Acta obstetricia et gynecologica Scandinavica. 2004;83(11):1067-70. [DOI:10.1111/j.0001-6349.2004.00601.x] [PMID]
43. Pongcharoen S, Supalap K. Interleukin‐17 increased progesterone secretion by JEG‐3 human choriocarcinoma cells. American journal of reproductive immunology. 2009;61(4):261-4. [DOI:10.1111/j.1600-0897.2009.00693.x] [PMID]
44. Travis OK, White D, Pierce WA, Ge Y, Stubbs CY, Spradley FT, et al. Chronic infusion of interleukin‐17 promotes hypertension, activation of cytolytic natural killer cells, and vascular dysfunction in pregnant rats. Physiological Reports. 2019;7(7):e14038. [DOI:10.14814/phy2.14038] [PMID] []
45. Lee S, Kim J, Hur S, Kim C, Na B, Lee M, et al. An imbalance in interleukin-17-producing T and Foxp3+ regulatory T cells in women with idiopathic recurrent pregnancy loss. Human reproduction. 2011;26(11):2964-71. [DOI:10.1093/humrep/der301] [PMID]
46. Saifi B, Rezaee SA, Tajik N, Ahmadpour ME, Ashrafi M, Vakili R, et al. Th17 cells and related cytokines in unexplained recurrent spontaneous miscarriage at the implantation window. Reproductive biomedicine online. 2014;29(4):481-9. [DOI:10.1016/j.rbmo.2014.06.008] [PMID]
47. Ozkan ZS, Deveci D, Kumbak B, Simsek M, Ilhan F, Sekercioglu S, Sapmaz E. What is the impact of Th1/Th2 ratio, SOCS3, IL17, and IL35 levels in unexplained infertility? Journal of reproductive immunology. 2014;103:53-8. [DOI:10.1016/j.jri.2013.11.002] [PMID]
48. Huang Q, Wu H, Li M, Yang Y, Fu X. Prednisone improves pregnancy outcome in repeated implantation failure by enhance regulatory T cells bias. Journal of Reproductive Immunology. 2021;143:103245. [DOI:10.1016/j.jri.2020.103245] [PMID]
49. Jensen F, Wallukat G, Herse F, Budner O, El-Mousleh T, Costa S-D, et al. CD19+ CD5+ cells as indicators of preeclampsia. Hypertension. 2012;59(4):861-8. [DOI:10.1161/HYPERTENSIONAHA.111.188276] [PMID]
50. Muzzio D, Zenclussen AC, Jensen F. The role of B cells in pregnancy: the good and the bad. American Journal of Reproductive Immunology. 2013;69(4):408-12. [DOI:10.1111/aji.12079] [PMID]
51. Saccone G, Berghella V, Maruotti GM, Ghi T, Rizzo G, Simonazzi G, et al. Antiphospholipid antibody profile based obstetric outcomes of primary antiphospholipid syndrome: the PREGNANTS study. American journal of obstetrics and gynecology. 2017;216(5):525. e1-. e12. [DOI:10.1016/j.ajog.2017.01.026] [PMID]
52. Gagné D, Rivard M, Pagé M, Shazand K, Hugo P, Gosselin D. Blood leukocyte subsets are modulated in patients with endometriosis. Fertility and sterility. 2003;80(1):43-53. [DOI:10.1016/S0015-0282(03)00552-1] [PMID]
53. Riccio LG, Baracat EC, Chapron C, Batteux F, Abrão MS. The role of the B lymphocytes in endometriosis: a systematic review. Journal of reproductive immunology. 2017;123:29-34. [DOI:10.1016/j.jri.2017.09.001] [PMID]
54. Danaii S, Ghorbani F, Ahmadi M, Abbaszadeh H, Koushaeian L, Soltani-Zangbar MS, et al. IL-10-producing B cells play important role in the pathogenesis of recurrent pregnancy loss. International Immunopharmacology. 2020;87:106806. [DOI:10.1016/j.intimp.2020.106806] [PMID]
55. Shigesi N, Kvaskoff M, Kirtley S, Feng Q, Fang H, Knight JC, et al. The association between endometriosis and autoimmune diseases: a systematic review and meta-analysis. Human reproduction update. 2019;25(4):486-503. [DOI:10.1093/humupd/dmz014] [PMID] []
56. Khizroeva J, Nalli C, Bitsadze V, Lojacono A, Zatti S, Andreoli L, et al. Infertility in women with systemic autoimmune diseases. Best Practice & Research Clinical Endocrinology & Metabolism. 2019;33(6):101369. [DOI:10.1016/j.beem.2019.101369] [PMID]
57. Rawlings DJ, Metzler G, Wray-Dutra M, Jackson SW. Altered B cell signalling in autoimmunity. Nature reviews Immunology. 2017;17(7):421-36. [DOI:10.1038/nri.2017.24] [PMID] []
58. Hershberg U, Luning Prak ET. The analysis of clonal expansions in normal and autoimmune B cell repertoires. Philosophical Transactions of the Royal Society B: Biological Sciences. 2015;370(1676):20140239. [DOI:10.1098/rstb.2014.0239] [PMID] []
59. Song D, Li T-C, Zhang Y, Feng X, Xia E, Huang X, Xiao Y. Correlation between hysteroscopy findings and chronic endometritis. Fertility and sterility. 2019;111(4):772-9. [DOI:10.1016/j.fertnstert.2018.12.007] [PMID]
60. Cicinelli E, Bettocchi S, de Ziegler D, Loizzi V, Cormio G, Marinaccio M, et al. Chronic endometritis, a common disease hidden behind endometrial polyps in premenopausal women: first evidence from a case-control study. Journal of minimally invasive gynecology. 2019;26(7):1346-50. [DOI:10.1016/j.jmig.2019.01.012] [PMID]
61. Liu Y, Chen X, Huang J, Wang C-C, Yu M-Y, Laird S, Li T-C. Comparison of the prevalence of chronic endometritis as determined by means of different diagnostic methods in women with and without reproductive failure. Fertility and sterility. 2018;109(5):832-9. [DOI:10.1016/j.fertnstert.2018.01.022] [PMID]
62. Kitaya K, Tada Y, Hayashi T, Taguchi S, Funabiki M, Nakamura Y. Comprehensive endometrial immunoglobulin subclass analysis in infertile women suffering from repeated implantation failure with or without chronic endometritis. American journal of reproductive immunology. 2014;72(4):386-91. [DOI:10.1111/aji.12277] [PMID]
63. Weisel NM, Weisel FJ, Farber DL, Borghesi LA, Shen Y, Ma W, et al. Comprehensive analyses of B-cell compartments across the human body reveal novel subsets and a gut-resident memory phenotype. Blood, The Journal of the American Society of Hematology. 2020;136(24):2774-85. [DOI:10.1182/blood.2019002782] [PMID] []
64. Farstad I, Carlsen H, Morton H, Brandtzaeg P. Immunoglobulin A cell distribution in the human small intestine: phenotypic and functional characteristics. Immunology. 2000;101(3):354-63. [DOI:10.1046/j.1365-2567.2000.00118.x] [PMID] []
65. Rodrigues VdO, Soligo AdG, Pannain GD. Síndrome Anticorpo Antifosfolípide e Infertilidade. Revista Brasileira de Ginecologia e Obstetrícia. 2019;41:621-7. [DOI:10.1055/s-0039-1697982] [PMID]
66. Sthoeger ZM, Mozes E, Tartakovsky B. Anti-cardiolipin antibodies induce pregnancy failure by impairing embryonic implantation. Proceedings of the National Academy of Sciences. 1993;90(14):6464-7. [DOI:10.1073/pnas.90.14.6464] [PMID] []
67. Di Simone N, Meroni P, Del Papa N, Raschi E, Caliandro D, De Carolis S, et al. Antiphospholipid antibodies affect trophoblast gonadotropin secretion and invasiveness by binding directly and through adhered β2‐glycoprotein I. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2000;43(1):140-50. https://doi.org/10.1002/1529-0131(200001)43:1<140::AID-ANR18>3.0.CO;2-P [DOI:10.1002/1529-0131(200001)43:13.0.CO;2-P] [PMID]
68. Di Simone N, Meroni P, D'Asta M, Di Nicuolo F, D'Alessio MC, Caruso A. Pathogenic role of anti-β2-glycoprotein I antibodies on human placenta: functional effects related to implantation and roles of heparin. Human Reproduction Update. 2007;13(2):189-96. [DOI:10.1093/humupd/dml051] [PMID]
69. Chighizola CB, Raimondo MG, Meroni PL. Does APS impact women's fertility? Current rheumatology reports. 2017;19:1-9. [DOI:10.1007/s11926-017-0663-7] [PMID]
70. Pattison NS, Chamley LW, Birdsall M, Zanderigo AM, Liddell HS, McDougall J. Does aspirin have a role in improving pregnancy outcome for women with the antiphospholipid syndrome? A randomized controlled trial. American journal of obstetrics and gynecology. 2000;183(4):1008-12. [DOI:10.1067/mob.2000.106754] [PMID]
71. Tong M, Viall C, Chamley L. Antiphospholipid antibodies and the placenta: a systematic review of their in vitro effects and modulation by treatment. Human reproduction update. 2015;21(1):97-118. [DOI:10.1093/humupd/dmu049] [PMID]
72. Abrahams VM, Chamley LW, Salmon JE. Antiphospholipid syndrome and pregnancy: pathogenesis to translation. Arthritis & rheumatology (Hoboken, NJ). 2017;69(9):1710. [DOI:10.1002/art.40136] [PMID] []
73. Chauleur C, GALANAUD JP, Alonso S, Cochery‐Nouvellon E, BALDUCCHI JP, Marès P, et al. Observational study of pregnant women with a previous spontaneous abortion before the 10th gestation week with and without antiphospholipid antibodies. Journal of Thrombosis and Haemostasis. 2010;8(4):699-706. [DOI:10.1111/j.1538-7836.2010.03747.x] [PMID]
74. Ibrahim I, Mamman A, Adaji S, Hassan A, Babadoko A. Prevalence of lupus anticoagulant in women with spontaneous abortion in Zaria. Nigerian journal of clinical practice. 2017;20(9):1145-9. [DOI:10.4103/njcp.njcp_125_16]
75. Abdullahi ZG, Abdul MA, Aminu SM, Musa BO, Amadu L, Jibril E-BM. Antiphospholipid antibodies among pregnant women with recurrent fetal wastage in a tertiary hospital in Northern Nigeria. Annals of African Medicine. 2016;15(3):133. [DOI:10.4103/1596-3519.188894] [PMID] []
76. La Rocca C, Carbone F, Longobardi S, Matarese G. The immunology of pregnancy: regulatory T cells control maternal immune tolerance toward the fetus. Immunology letters. 2014;162(1):41-8. [DOI:10.1016/j.imlet.2014.06.013] [PMID]
77. Care AS, Bourque SL, Morton JS, Hjartarson EP, Robertson SA, Davidge ST. Reduction in regulatory T cells in early pregnancy causes uterine artery dysfunction in mice. Hypertension. 2018;72(1):177-87. [DOI:10.1161/HYPERTENSIONAHA.118.10858] [PMID]
78. Kwak‐Kim J, Chung‐Bang H, Ng S, Ntrivalas E, Mangubat C, Beaman K, et al. Increased T helper 1 cytokine responses by circulating T cells are present in women with recurrent pregnancy losses and in infertile women with multiple implantation failures after IVF. Human reproduction. 2003;18(4):767-73. [DOI:10.1093/humrep/deg156] [PMID]
79. Krivonos MI, Kh. Khizroeva J, Zainulina MS, Eremeeva DR, Selkov SA, Chugunova A, et al. The role of lymphocytic cells in infertility and reproductive failures in women with antiphospholipid antibodies. The Journal of Maternal-Fetal & Neonatal Medicine. 2022;35(5):871-7. [DOI:10.1080/14767058.2020.1732343] [PMID]
80. Taylor PV, Campbell JM, Scott JS. Presence of autoantibodies in women with unexplained infertility. American journal of obstetrics and gynecology. 1989;161(2):377-9. [DOI:10.1016/0002-9378(89)90524-3]
81. Kim CH, Cho YK, Mok JE. The efficacy of immunotherapy in patients who underwent superovulation with intrauterine insemination. Fertility and sterility. 1996;65(1):133-8. [DOI:10.1016/S0015-0282(16)58040-6] [PMID]
82. Coulam CB, Kaider BD, Kaider AS, Janowicz P, Roussev RG. Antiphospholipid antibodies associated with implantation failure after IVF/ET. Journal of Assisted Reproduction and Genetics. 1997;14:603-8. [DOI:10.1023/A:1022588903620] [PMID] []
83. Plowden TC, Schisterman EF, Sjaarda LA, Zarek SM, Perkins NJ, Silver R, et al. Subclinical hypothyroidism and thyroid autoimmunity are not associated with fecundity, pregnancy loss, or live birth. The Journal of Clinical Endocrinology & Metabolism. 2016;101(6):2358-65. [DOI:10.1210/jc.2016-1049] [PMID] []
84. Cueva S, Burks C, McQueen D, Barkoff MS, Stephenson MD. Maternal antithyroid antibodies and euploid miscarriage in women with recurrent early pregnancy loss. Fertility and Sterility. 2018;110(3):452-8. [DOI:10.1016/j.fertnstert.2018.04.026] [PMID]
85. Glinoer D, Delange F. The potential repercussions of maternal, fetal, and neonatal hypothyroxinemia on the progeny. Thyroid. 2000;10(10):871-87. [DOI:10.1089/thy.2000.10.871] [PMID]
86. Sakar M, Unal A, Atay A, Zebitay A, Verit F, Demir S, et al. Is there an effect of thyroid autoimmunity on the outcomes of assisted reproduction? Journal of Obstetrics and Gynaecology. 2016;36(2):213-7. [DOI:10.3109/01443615.2015.1049253] [PMID]
87. Muller A, Verhoeff A, Mantel M, Berghout A. Thyroid autoimmunity and abortion: a prospective study in women undergoing in vitro fertilization. Fertility and sterility. 1999;71(1):30-4. [DOI:10.1016/S0015-0282(98)00394-X] [PMID]
88. Bussen S, Steck T. Thyroid autoantibodies in euthyroid non-pregnant women with recurrent spontaneous abortions. Human reproduction. 1995;10(11):2938-40. [DOI:10.1093/oxfordjournals.humrep.a135823] [PMID]
89. Kutteh WH, Yetman DL, Carr AC, Beck LA, Scott Jr RT. Increased prevalence of antithyroid antibodies identified in women with recurrent pregnancy loss but not in women undergoing assisted reproduction. Fertility and sterility. 1999;71(5):843-8. [DOI:10.1016/S0015-0282(99)00091-6] [PMID]
90. Vissenberg R, Manders V, Mastenbroek S, Fliers E, Afink G, Ris-Stalpers C, et al. Pathophysiological aspects of thyroid hormone disorders/thyroid peroxidase autoantibodies and reproduction. Human reproduction update. 2015;21(3):378-87. [DOI:10.1093/humupd/dmv004] [PMID]
91. Poppe K, Velkeniers B, Glinoer D. Thyroid disease and female reproduction. Clinical endocrinology. 2007;66(3):309-21. [DOI:10.1111/j.1365-2265.2007.02752.x] [PMID]
92. Colicchia M, Campagnolo L, Baldini E, Ulisse S, Valensise H, Moretti C. Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Human reproduction update. 2014;20(6):884-904. [DOI:10.1093/humupd/dmu028] [PMID]
93. Bliddal S, Boas M, Hilsted L, Friis-Hansen L, Tabor A, Feldt-Rasmussen U. Thyroid function and autoimmunity in Danish pregnant women after an iodine fortification program and associations with obstetric outcomes. European Journal of Endocrinology. 2015;173(6):709-18. [DOI:10.1530/EJE-15-0358] [PMID]
94. Tierney K, Delpachitra P, Grossmann M, Onwude J, Sikaris K, Wallace EM, et al. Thyroid function and autoantibody status among women who spontaneously deliver under 35 weeks of gestation. Clinical endocrinology. 2009;71(6):892-5. [DOI:10.1111/j.1365-2265.2009.03569.x] [PMID]
95. Provinciali M, Di Stefano G, Fabris N. Improvement in the proliferative capacity and natural killer cell activity of murine spleen lymphocytes by thyrotropin. International journal of immunopharmacology. 1992;14(5):865-70. [DOI:10.1016/0192-0561(92)90085-Y] [PMID]
96. Hidaka Y, Amino N, Iwatani Y, Kaneda T, Nasu M, Mitsuda N, et al. Increase in peripheral natural killer cell activity in patients with autoimmune thyroid disease. Autoimmunity. 1992;11(4):239-46. [DOI:10.3109/08916939209035161] [PMID]
97. Kim NY, Cho HJ, Kim HY, Yang KM, Ahn HK, Thornton S, et al. Thyroid autoimmunity and its association with cellular and humoral immunity in women with reproductive failures. American Journal of Reproductive Immunology. 2011;65(1):78-87. [DOI:10.1111/j.1600-0897.2010.00911.x] [PMID]
98. Pratt D, Novotny M, Kaberlein G, Dudkiewicz A, Gleicher N. Antithyroid antibodies and the association with non-organ-specific antibodies in recurrent pregnancy loss. American Journal of Obstetrics and Gynecology. 1993;168(3):837-41. [DOI:10.1016/S0002-9378(12)90830-3] [PMID]
99. Svensson J, Oderup C, Åkesson C, Uvebrant K, Hallengren B, Ericsson U, et al. Maternal autoimmune thyroid disease and the fetal immune system. Experimental and clinical endocrinology & diabetes. 2011:445-50. [DOI:10.1055/s-0031-1279741] [PMID]
100. Miko E, Meggyes M, Doba K, Farkas N, Bogar B, Barakonyi A, et al. Characteristics of peripheral blood NK and NKT-like cells in euthyroid and subclinical hypothyroid women with thyroid autoimmunity experiencing reproductive failure. Journal of reproductive immunology. 2017;124:62-70. [DOI:10.1016/j.jri.2017.09.008] [PMID]
101. Iyidir OT, Degertekin CK, Sonmez C, Yucel AA, Erdem M, Akturk M, Ayvaz G. The effect of thyroid autoimmunity on T-cell responses in early pregnancy. Journal of reproductive immunology. 2015;110:61-6. [DOI:10.1016/j.jri.2015.04.002] [PMID]
102. Negro R, Mangieri T, Coppola L, Presicce G, Casavola EC, Gismondi R, et al. Levothyroxine treatment in thyroid peroxidase antibody-positive women undergoing assisted reproduction technologies: a prospective study. Human reproduction. 2005;20(6):1529-33. [DOI:10.1093/humrep/deh843]
103. Karakosta P, Alegakis D, Georgiou V, Roumeliotaki T, Fthenou E, Vassilaki M, et al. Thyroid dysfunction and autoantibodies in early pregnancy are associated with increased risk of gestational diabetes and adverse birth outcomes. The Journal of Clinical Endocrinology & Metabolism. 2012;97(12):4464-72. [DOI:10.1210/jc.2012-2540] [PMID]
104. Abbassi-Ghanavati M, Casey BM, Spong CY, McIntire DD, Halvorson LM, Cunningham FG. Pregnancy outcomes in women with thyroid peroxidase antibodies. Obstetrics & Gynecology. 2010;116(2 Part 1):381-6. [DOI:10.1097/AOG.0b013e3181e904e5] [PMID]
105. Meena M, Chopra S, Jain V, Aggarwal N. The effect of anti-thyroid peroxidase antibodies on pregnancy outcomes in euthyroid women. Journal of clinical and diagnostic research: JCDR. 2016;10(9):QC04. [DOI:10.7860/JCDR/2016/19009.8403] [PMID] []
106. He X, Wang P, Wang Z, He X, Xu D, Wang B. Endocrinology in pregnancy: thyroid antibodies and risk of preterm delivery: a meta-analysis of prospective cohort studies. European journal of endocrinology. 2012;167(4):455-64. [DOI:10.1530/EJE-12-0379] [PMID]
107. Thangaratinam S, Tan A, Knox E, Kilby MD, Franklyn J, Coomarasamy A. Association between thyroid autoantibodies and miscarriage and preterm birth: meta-analysis of evidence. Bmj. 2011;342. [DOI:10.1136/bmj.d2616] [PMID] []
108. Xu L, Chang V, Murphy A, Rock JA, Damewood M, Schlaff W, Zacur HA. Antinuclear antibodies in sera of patients with recurrent pregnancy wastage. American journal of obstetrics and gynecology. 1990;163(5):1493-7. [DOI:10.1016/0002-9378(90)90612-B] [PMID]
109. Deocharan B, Qing X, Beger E, Putterman C. Antigenic triggers and molecular targets for anti-double-stranded DNA antibodies. Lupus. 2002;11(12):865-71. [DOI:10.1191/0961203302lu308rr] [PMID]
110. Derksen R, Bast E, Strooisma T, Jacobs J. A comparison between the Farr radioimmunoassay and a new automated fluorescence immunoassay for the detection of antibodies against double stranded DNA in serum. Annals of the rheumatic diseases. 2002;61(12):1099-102. [DOI:10.1136/ard.61.12.1099] [PMID] []
111. Deroux A, Dumestre-Perard C, Dunand-Faure C, Bouillet L, Hoffmann P. Female infertility and serum auto-antibodies: a systematic review. Clinical reviews in allergy & immunology. 2017;53:78-86. [DOI:10.1007/s12016-016-8586-z] [PMID]
112. Ticconi C, Rotondi F, Veglia M, Pietropolli A, Bernardini S, Ria F, et al. Antinuclear autoantibodies in women with recurrent pregnancy loss. American Journal of Reproductive Immunology. 2010;64(6):384-92. [DOI:10.1111/j.1600-0897.2010.00863.x] [PMID]
113. Reimand K, Talja I, Metsküla K, Kadastik Ü, Matt K, Uibo R. Autoantibody studies of female patients with reproductive failure. Journal of Reproductive Immunology. 2001;51(2):167-76. [DOI:10.1016/S0165-0378(01)00075-4] [PMID]
114. Zeng M, Wen P, Duan J. Association of antinuclear antibody with clinical outcome of patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment: A meta‐analysis. American Journal of Reproductive Immunology. 2019;82(3):e13158. [DOI:10.1111/aji.13158] [PMID]
115. Papadimitraki ED, Choulaki C, Koutala E, Bertsias G, Tsatsanis C, Gergianaki I, et al. Expansion of toll‐like receptor 9-expressing B cells in active systemic lupus erythematosus: Implications for the induction and maintenance of the autoimmune process. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2006;54(11):3601-11. [DOI:10.1002/art.22197] [PMID]
116. Zhu Q, Wu L, Xu B, Hu M-H, Tong X-H, Ji J-J, Liu Y-S. A retrospective study on IVF/ICSI outcome in patients with anti-nuclear antibodies: the effects of prednisone plus low-dose aspirin adjuvant treatment. Reproductive Biology and Endocrinology. 2013;11(1):1-9. [DOI:10.1186/1477-7827-11-98] [PMID] []
117. Tanacan A, Beksac MS, Orgul G, Duru S, Sener B, Karaagaoglu E. Impact of extractable nuclear antigen, anti-double stranded DNA, antiphospholipid antibody, and anticardiolipin antibody positivity on obstetrical complications and pregnancy outcomes. Human antibodies. 2019;27(2):135-41. [DOI:10.3233/HAB-180359] [PMID]
118. Ying Y, Zhong Y-p, Zhou C-q, Xu Y-w, Wang Q, Li J, et al. Antinuclear antibodies predicts a poor IVF-ET outcome: impaired egg and embryo development and reduced pregnancy rate. Immunological investigations. 2012;41(5):458-68. [DOI:10.3109/08820139.2012.660266] [PMID]
119. Wilson L. Sperm agglutinins in human semen and blood. Proceedings of the Society for Experimental Biology and Medicine. 1954;85(4):652-5. [DOI:10.3181/00379727-85-20982] [PMID]
120. AS V, Dhama K, Chakraborty S, Abdul Samad H, K. Latheef S, Sharun K, et al. Role of antisperm antibodies in infertility, pregnancy, and potential for contraceptive and antifertility vaccine designs: Research progress and pioneering vision. Vaccines. 2019;7(3):116. [DOI:10.3390/vaccines7030116] [PMID] []
121. Marconi M, Pilatz A, Wagenlehner F, Diemer T, Weidner W. Are antisperm antibodies really associated with proven chronic inflammatory and infectious diseases of the male reproductive tract? European urology. 2009;56(4):708-15. [DOI:10.1016/j.eururo.2008.08.001] [PMID]
122. Mazumdar S, Levine AS. Antisperm antibodies: etiology, pathogenesis, diagnosis, and treatment. Fertility and sterility. 1998;70(5):799-810. [DOI:10.1016/S0015-0282(98)00302-1] [PMID]
123. Eggert‐Kruse W, Rohr G, Probst S, Rusu R, Hund M, Demirakca T, et al. Antisperm antibodies and microorganisms in genital secretions-a clinically significant relationship? Andrologia. 1998;30(S1):61-71. [DOI:10.1111/j.1439-0272.1998.tb02828.x] [PMID]
124. Eggert-Kruse W, Buhlinger-Göpfarth N, Rohr G, Probst S, Aufenanger J, Näher H, Runnebaum B. Immunology: Antibodies to Chlamydia trachomatis in semen and relationship with parameters of male fertility. Human reproduction. 1996;11(7):1408-17. [DOI:10.1093/oxfordjournals.humrep.a019410] [PMID]
125. Kortebani G, Gonzales G, Barrera C, Mazzolli A. Leucocyte populations in semen and male accessory gland function: relationship with antisperm antibodies and seminal quality. Andrologia. 1992;24(4):197-204. [DOI:10.1111/j.1439-0272.1992.tb02637.x] [PMID]
126. Komori K, Tsujimura A, Miura H, Shin M, Takada T, Honda M, et al. Serial follow‐up study of serum testosterone and antisperm antibodies in patients with non‐obstructive azoospermia after conventional or microdissection testicular sperm extraction. international journal of andrology. 2004;27(1):32-6. [DOI:10.1046/j.0105-6263.2003.00443.x] [PMID]
127. Kendirci M, Hellstrom WJ. Antisperm antibodies and varicocele. Southern medical journal. 2006;99(1):13-5. [DOI:10.1097/01.smj.0000196937.73957.83] [PMID]
128. Jiang Y, Cui D, Du Y, Lu J, Yang L, Li J, et al. Association of anti-sperm antibodies with chronic prostatitis: a systematic review and meta-analysis. Journal of Reproductive Immunology. 2016;118:85-91. [DOI:10.1016/j.jri.2016.09.004] [PMID]
129. Condorelli R, Russo GI, Calogero A, Morgia G, La Vignera S. Chronic prostatitis and its detrimental impact on sperm parameters: a systematic review and meta-analysis. Journal of Endocrinological Investigation. 2017;40:1209-18. [DOI:10.1007/s40618-017-0684-0] [PMID]
130. Piroozmand A, Nasab SDM, Erami M, Hashemi SMA, Khodabakhsh E, Ahmadi N, Vahedpoor Z. Distribution of human papillomavirus and antisperm antibody in semen and its association with semen parameters among infertile men. Journal of Reproduction & Infertility. 2020;21(3):183.
131. Zini A, Fahmy N, Belzile E, Ciampi A, Al-Hathal N, Kotb A. Antisperm antibodies are not associated with pregnancy rates after IVF and ICSI: systematic review and meta-analysis. Human reproduction. 2011;26(6):1288-95. [DOI:10.1093/humrep/der074] [PMID]
132. Zini A, Lefebvre J, Kornitzer G, Bissonnette F, Kadoch IJ, Dean N, Phillips S. Anti-sperm antibody levels are not related to fertilization or pregnancy rates after IVF or IVF/ICSI. Journal of reproductive immunology. 2011;88(1):80-4. [DOI:10.1016/j.jri.2010.09.002] [PMID]
133. Clarke GN. Etiology of sperm immunity in women. Fertility and sterility. 2009;91(2):639-43. [DOI:10.1016/j.fertnstert.2007.11.045] [PMID]
134. Djaladat H, Mehrsai A, Rezazade M, Djaladat Y, Pourmand G. Varicocele and antisperm antibody: fact or fiction? Southern medical journal. 2006;99(1):44-7. [DOI:10.1097/01.smj.0000197036.08282.70] [PMID]
135. Marín‐Briggiler CI, Vazquez‐Levin MH, Gonzalez‐Echeverría F, Blaquier JA, Miranda PV, Tezón JG. Effect of antisperm antibodies present in human follicular fluid upon the acrosome reaction and sperm-zona pellucida interaction. American Journal of Reproductive Immunology. 2003;50(3):209-19. [DOI:10.1034/j.1600-0897.2003.00082.x] [PMID]
136. Taneichi A, Shibahara H, Takahashi K, Sasaki S, Kikuchi K, Sato I, Yoshizawa M. Effects of sera from infertile women with sperm immobilizing antibodies on fertilization and embryo development in vitro in mice. American Journal of Reproductive Immunology. 2003;50(2):146-51. [DOI:10.1034/j.1600-0897.2003.00070.x] [PMID]
137. Francavilla F, Santucci R, Barbonetti A, Francavilla S. Naturally-occurring antisperm antibodies in men: interference with fertility and clinical implications. An update. Frontiers in Bioscience-Landmark. 2007;12(8):2890-911. [DOI:10.2741/2280] [PMID]
138. Menkveld R. Clinical significance of the low normal sperm morphology value as proposed in the fifth edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen. Asian journal of andrology. 2010;12(1):47. [DOI:10.1038/aja.2009.14] [PMID] []
139. Heidenreich A, Bonfig R, Wilbert DM, Strohmaier WL, Engelmann UH. Risk factors for antisperm antibodies in infertile men. American Journal of Reproductive Immunology. 1994;31(2‐3):69-76. [DOI:10.1111/j.1600-0897.1994.tb00849.x] [PMID]
140. Dimitrov D, Urbanek V, Zvěřina J, Madar J, Nouza K, Kinský R. Correlation of asthenozoospermia with increased antisperm cell-mediated immunity in men from infertile couples. Journal of reproductive immunology. 1994;27(1):3-12. [DOI:10.1016/0165-0378(94)90011-6] [PMID]
141. Verón GL, Molina RI, Tissera AD, Estofan GM, Marín‐Briggiler CI, Vazquez‐Levin MH. Incidence of sperm surface autoantibodies and relationship with routine semen parameters and sperm kinematics. American Journal of Reproductive Immunology. 2016;76(1):59-69. [DOI:10.1111/aji.12519] [PMID]
142. Cui D, Han G, Shang Y, Liu C, Xia L, Li L, Yi S. Antisperm antibodies in infertile men and their effect on semen parameters: a systematic review and meta-analysis. Clinica Chimica Acta. 2015;444:29-36. [DOI:10.1016/j.cca.2015.01.033] [PMID]
143. Lédée N, Petitbarat M, Prat-Ellenberg L, Dray G, Cassuto G, Chevrier L, et al. The uterine immune profile: A method for individualizing the management of women who have failed to implant an embryo after IVF/ICSI. Journal of Reproductive Immunology. 2020;142:103207. [DOI:10.1016/j.jri.2020.103207] [PMID]
144. Qi X, Lei M, Qin L, Xie M, Zhao D, Wang J. Endogenous TWEAK is critical for regulating the function of mouse uterine natural killer cells in an immunological model of pregnancy loss. Immunology. 2016;148(1):70-82. [DOI:10.1111/imm.12588] [PMID] []
145. Petitbarat M, Rahmati M, Sérazin V, Dubanchet S, Morvan C, Wainer R, et al. TWEAK appears as a modulator of endometrial IL-18 related cytotoxic activity of uterine natural killers. PLoS One. 2011;6(1):e14497. [DOI:10.1371/journal.pone.0014497] [PMID] []
146. Petitbarat M, Serazin V, Dubanchet S, Wayner R, de Mazancourt P, Chaouat G, Lédée N. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor inducible-14 might regulate the effects of interleukin 18 and 15 in the human endometrium. Fertility and sterility. 2010;94(3):1141-3. [DOI:10.1016/j.fertnstert.2009.10.049] [PMID]
147. Winkles JA. The TWEAK-Fn14 cytokine-receptor axis: discovery, biology and therapeutic targeting. Nature reviews Drug discovery. 2008;7(5):411-25. [DOI:10.1038/nrd2488] [PMID] []
148. Croy B, Gambel P, Rossant J, Wegmann T. Characterization of murine decidual natural killer (NK) cells and their relevance to the success of pregnancy. Cellular immunology. 1985;93(2):315-26. [DOI:10.1016/0008-8749(85)90137-6] [PMID]
149. Chaouat G, Ledee-bataille N, Zourbas S, Dubanchet S, Sandra O, Martal J, et al. Implantation: can immunological parameters of implantation failure be of interest for pre-eclampsia? Journal of reproductive immunology. 2003;59(2):205-17. https://doi.org/10.1016/S0165-0378(03)00048-2 [DOI:10.1016/S0165-0378(03)00055-X] [PMID]
150. Lédée-Bataille N, Bonnet-Chea K, Hosny G, Dubanchet S, Frydman R, Chaouat G. Role of the endometrial tripod interleukin-18,-15, and-12 in inadequate uterine receptivity in patients with a history of repeated in vitro fertilization-embryo transfer failure. Fertility and sterility. 2005;83(3):598-605. [DOI:10.1016/j.fertnstert.2004.11.021] [PMID]
151. Zhao Y, Niu C, Cui J. Gamma-delta (γδ) T cells: friend or foe in cancer development? Journal of translational medicine. 2018;16(1):1-13. https://doi.org/10.1186/s12967-017-1378-2 https://doi.org/10.1186/s12967-024-06014-9 [DOI:10.1186/s12967-018-1491-x] [PMID] []
152. Manaster I, Mizrahi S, Goldman-Wohl D, Sela HY, Stern-Ginossar N, Lankry D, et al. Endometrial NK cells are special immature cells that await pregnancy. The Journal of Immunology. 2008;181(3):1869-76. [DOI:10.4049/jimmunol.181.3.1869] [PMID]
153. Cheloufi M, Kazhalawi A, Pinton A, Rahmati M, Chevrier L, Prat-Ellenberg L, et al. The endometrial immune profiling may positively affect the management of recurrent pregnancy loss. Frontiers in Immunology. 2021;12:656701. [DOI:10.3389/fimmu.2021.656701] [PMID] []
154. Lédée N, Petitbarat M, Chevrier L, Vitoux D, Vezmar K, Rahmati M, et al. The uterine immune profile may help women with repeated unexplained embryo implantation failure after in vitro fertilization. American Journal of Reproductive Immunology. 2016;75(3):388-401. [DOI:10.1111/aji.12483] [PMID] []
155. Okada H, Tsuzuki T, Murata H. Decidualization of the human endometrium. Reproductive medicine and biology. 2018;17(3):220-7. [DOI:10.1002/rmb2.12088] [PMID] []
156. Brar AK, Frank GR, Kessler CA, Cedars MI, Handwerger S. Progesterone-dependent decidualization of the human endometrium is mediated by cAMP. Endocrine. 1997;6:301-7. [DOI:10.1007/BF02820507] [PMID]
157. Brighton PJ, Maruyama Y, Fishwick K, Vrljicak P, Tewary S, Fujihara R, et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. elife. 2017;6:e31274. [DOI:10.7554/eLife.31274] [PMID] []
158. Feroze-Zaidi F, Fusi L, Takano M, Higham J, Salker MS, Goto T, et al. Role and regulation of the serum-and glucocorticoid-regulated kinase 1 in fertile and infertile human endometrium. Endocrinology. 2007;148(10):5020-9. [DOI:10.1210/en.2007-0659] [PMID]
159. Thorens B, Mueckler M. Glucose transporters in the 21st Century. American Journal of Physiology-Endocrinology and Metabolism. 2010;298(2):E141-E5. [DOI:10.1152/ajpendo.00712.2009] [PMID] []
160. Russell P, Sacks G, Tremellen K, Gee A. The distribution of immune cells and macrophages in the endometrium of women with recurrent reproductive failure. III: Further observations and reference ranges. Pathology. 2013;45(4):393-401. [DOI:10.1097/PAT.0b013e328361429b] [PMID]
161. Rätsep MT, Felker AM, Kay VR, Tolusso L, Hofmann AP, Croy BA. Uterine natural killer cells: supervisors of vasculature construction in early decidua basalis. Reproduction. 2015;149(2):R91-R102. [DOI:10.1530/REP-14-0271] [PMID]
162. Gaynor LM, Colucci F. Uterine natural killer cells: functional distinctions and influence on pregnancy in humans and mice. Frontiers in immunology. 2017;8:467. [DOI:10.3389/fimmu.2017.00467] [PMID] []
163. Kitaya K, Yasuda J, Yagi I, Tada Y, Fushiki S, Honjo H. IL-15 expression at human endometrium and decidua. Biology of reproduction. 2000;63(3):683-7. [DOI:10.1095/biolreprod63.3.683] [PMID]
164. Okada S, Okada H, Sanezumi M, Nakajima T, Yasuda K, Kanzaki H. Expression of interleukin-15 in human endometrium and decidua. Molecular human reproduction. 2000;6(1):75-80. [DOI:10.1093/molehr/6.1.75] [PMID]
165. Kajihara T, Brosens JJ, Ishihara O. The role of FOXO1 in the decidual transformation of the endometrium and early pregnancy. Medical molecular morphology. 2013;46:61-8. https://doi.org/10.1007/s00795-013-0018-z [DOI:10.1007/s00795-013-0035-y] [PMID]
166. Vasquez YM, Wang X, Wetendorf M, Franco HL, Mo Q, Wang T, et al. FOXO1 regulates uterine epithelial integrity and progesterone receptor expression critical for embryo implantation. PLoS genetics. 2018;14(11):e1007787. [DOI:10.1371/journal.pgen.1007787] [PMID] []
167. Ruan YC, Guo JH, Liu X, Zhang R, Tsang LL, Da Dong J, et al. Activation of the epithelial Na+ channel triggers prostaglandin E2 release and production required for embryo implantation. Nature medicine. 2012;18(7):1112-7. [DOI:10.1038/nm.2771] [PMID]
168. Salker MS, Christian M, Steel JH, Nautiyal J, Lavery S, Trew G, et al. Deregulation of the serum-and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure. Nature medicine. 2011;17(11):1509-13. [DOI:10.1038/nm.2498] [PMID]
169. von Wolff M, Ursel S, Hahn U, Steldinger R, Strowitzki T. Glucose transporter proteins (GLUT) in human endometrium: expression, regulation, and function throughout the menstrual cycle and in early pregnancy. The Journal of Clinical Endocrinology & Metabolism. 2003;88(8):3885-92. [DOI:10.1210/jc.2002-021890] [PMID]
170. Dambaeva S, Bilal M, Schneiderman S, Germain A, Fernandez E, Kwak-Kim J, et al. Decidualization score identifies an endometrial dysregulation in samples from women with recurrent pregnancy losses and unexplained infertility. F&S Reports. 2021;2(1):95-103. [DOI:10.1016/j.xfre.2020.12.004] [PMID] []
171. Agut H, Bonnafous P, Gautheret-Dejean A. Laboratory and clinical aspects of human herpesvirus 6 infections. Clinical microbiology reviews. 2015;28(2):313-35. [DOI:10.1128/CMR.00122-14] [PMID] []
172. Braun DK, Dominguez G, Pellett PE. Human herpesvirus 6. Clinical microbiology reviews. 1997;10(3):521-67. [DOI:10.1128/CMR.10.3.521] [PMID] []
173. De Bolle L, Naesens L, De Clercq E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clinical microbiology reviews. 2005;18(1):217-45. [DOI:10.1128/CMR.18.1.217-245.2005] [PMID] []
174. Komaroff AL, Rizzo R, Ecker JL. Human Herpesviruses 6A and 6B in reproductive diseases. Frontiers in Immunology. 2021;12:648945. [DOI:10.3389/fimmu.2021.648945] [PMID] []
175. Komaroff AL, Pellett PE, Jacobson S. Human herpesviruses 6a and 6b in brain diseases: Association versus causation. Clinical microbiology reviews. 2020;34(1):10.1128/cmr. 00143-20. [DOI:10.1128/CMR.00143-20] [PMID] []
176. Marci R, Gentili V, Bortolotti D, Lo Monte G, Caselli E, Bolzani S, et al. Presence of HHV-6A in endometrial epithelial cells from women with primary unexplained infertility. PloS one. 2016;11(7):e0158304. [DOI:10.1371/journal.pone.0158304] [PMID] []
177. Okuno T, Oishi H, Hayashi K, Nonogaki M, Tanaka K, Yamanishi K. Human herpesviruses 6 and 7 in cervixes of pregnant women. Journal of clinical microbiology. 1995;33(7):1968-70. [DOI:10.1128/jcm.33.7.1968-1970.1995] [PMID] []
178. Caserta MT, Hall CB, Schnabel K, Lofthus G, McDermott MP. Human herpesvirus (HHV)-6 and HHV-7 infections in pregnant women. The Journal of infectious diseases. 2007;196(9):1296-303. https://doi.org/10.1086/10.1086/522430 [DOI:10.1086/522430] [PMID]
179. Flamand L, Gosselin J, D'addario M, Hiscott J, Ablashi D, Gallo R, Menezes J. Human herpesvirus 6 induces interleukin-1 beta and tumor necrosis factor alpha, but not interleukin-6, in peripheral blood mononuclear cell cultures. Journal of virology. 1991;65(9):5105-10. [DOI:10.1128/jvi.65.9.5105-5110.1991] [PMID] []
180. TAKAHASHI K, SEGAL E, MUKAI T, MORIYAMA M, TAKAHASHI M, YAMANISHI K. Interferon and natural killer cell activity in patients with exanthem subitum. The Pediatric infectious disease journal. 1992;11(5):369-73. [DOI:10.1097/00006454-199205000-00006] [PMID]
181. Arena A, Capozza A, Di Luca D. Role of IFN gamma on TNF alpha, IL-1 beta and IL-6 release during HHV-6 infection. The New microbiologica. 1996;19(3):183-91.
182. Mayne M, Cheadle C, Soldan SS, Cermelli C, Yamano Y, Akhyani N, et al. Gene expression profile of herpesvirus-infected T cells obtained using immunomicroarrays: induction of proinflammatory mechanisms. Journal of virology. 2001;75(23):11641-50. [DOI:10.1128/JVI.75.23.11641-11650.2001] [PMID] []
183. Tallóczy Z, Virgin I, Herbert, Levine B. PKR-dependent xenophagic degradation of herpes simplex virus type 1. Autophagy. 2006;2(1):24-9. [DOI:10.4161/auto.2176] [PMID]
184. Flamand L, Stefanescu I, Menezes J. Human herpesvirus-6 enhances natural killer cell cytotoxicity via IL-15. The Journal of clinical investigation. 1996;97(6):1373-81. [DOI:10.1172/JCI118557] [PMID] []
185. Meeuwsen S, Persoon-Deen C, Bsibsi M, Bajramovic JJ, Ravid R, De Bolle L, van Noort JM. Modulation of the cytokine network in human adult astrocytes by human herpesvirus-6A. Journal of neuroimmunology. 2005;164(1-2):37-47. [DOI:10.1016/j.jneuroim.2005.03.013] [PMID]
186. Rizzo R, Soffritti I, D'Accolti M, Bortolotti D, Di Luca D, Caselli E. HHV-6A/6B infection of NK cells modulates the expression of miRNAs and transcription factors potentially associated to impaired NK activity. Frontiers in Microbiology. 2017;8:2143. [DOI:10.3389/fmicb.2017.02143] [PMID] []
187. Rizzo R, Di Luca D. Human herpesvirus 6A and 6B and NK cells. Acta Microbiologica et Immunologica Hungarica. 2018;65(2):119-25. [DOI:10.1556/030.65.2018.010] [PMID]
188. Gaccioli F, Lager S, de Goffau MC, Sovio U, Dopierala J, Gong S, et al. Fetal inheritance of chromosomally integrated human herpesvirus 6 predisposes the mother to pre-eclampsia. Nature microbiology. 2020;5(7):901-8. [DOI:10.1038/s41564-020-0711-3] [PMID] []
189. Miura H, Kawamura Y, Ohye T, Hattori F, Kozawa K, Ihira M, et al. Inherited chromosomally integrated human herpesvirus 6 is a risk factor for spontaneous abortion. The Journal of infectious diseases. 2021;223(10):1717-23. [DOI:10.1093/infdis/jiaa606] [PMID]
190. Bunting KL, Melnick AM. New effector functions and regulatory mechanisms of BCL6 in normal and malignant lymphocytes. Current opinion in immunology. 2013;25(3):339-46. [DOI:10.1016/j.coi.2013.05.003] [PMID] []
191. Cardenas MG, Oswald E, Yu W, Xue F, MacKerell Jr AD, Melnick AM. The expanding role of the BCL6 oncoprotein as a cancer therapeutic target. Clinical Cancer Research. 2017;23(4):885-93. [DOI:10.1158/1078-0432.CCR-16-2071] [PMID] []
192. Shaffer A, Yu X, He Y, Boldrick J, Chan EP, Staudt LM. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity. 2000;13(2):199-212. [DOI:10.1016/S1074-7613(00)00020-0] [PMID]
193. Evans-Hoeker E, Lessey BA, Jeong JW, Savaris RF, Palomino WA, Yuan L, et al. Endometrial BCL6 overexpression in eutopic endometrium of women with endometriosis. Reproductive Sciences. 2016;23(9):1234-41. [DOI:10.1177/1933719116649711] [PMID] []
194. Almquist LD, Likes CE, Stone B, Brown KR, Savaris R, Forstein DA, et al. Endometrial BCL6 testing for the prediction of in vitro fertilization outcomes: a cohort study. Fertility and sterility. 2017;108(6):1063-9. [DOI:10.1016/j.fertnstert.2017.09.017] [PMID] []
195. Ren Z, Gao Y, Gao Y, Liang G, Chen Q, Jiang S, et al. Distinct placental molecular processes associated with early-onset and late-onset preeclampsia. Theranostics. 2021;11(10):5028. [DOI:10.7150/thno.56141] [PMID] []
196. Guo F, Zhang B, Yang H, Fu Y, Wang Y, Huang J, et al. Systemic transcriptome comparison between early‐And late‐onset pre‐eclampsia shows distinct pathology and novel biomarkers. Cell Proliferation. 2021;54(2):e12968. [DOI:10.1111/cpr.12968] [PMID] []
197. Waldmann H, Melton PE, Manfredi AA, Than NG, Romero R, Papp Z, et al. integrated systems Biology approach identifies novel Maternal and Placental Pathways of Preeclampsia. Fetal-Maternal Immune Interactions in Pregnancy. 2020.
198. Brew O, Sullivan MH, Woodman A. Comparison of normal and pre-eclamptic placental gene expression: a systematic review with meta-analysis. PloS one. 2016;11(8):e0161504. [DOI:10.1371/journal.pone.0161504] [PMID] []
199. Vaiman D, Calicchio R, Miralles F. Landscape of transcriptional deregulations in the preeclamptic placenta. PloS one. 2013;8(6):e65498. [DOI:10.1371/journal.pone.0065498] [PMID] []
200. Maltepe E, Keith B, Arsham AM, Brorson JR, Simon MC. The role of ARNT2 in tumor angiogenesis and the neural response to hypoxia. Biochemical and biophysical research communications. 2000;273(1):231-8. [DOI:10.1006/bbrc.2000.2928] [PMID]
201. Chakraborty D, Cui W, Rosario GX, Scott RL, Dhakal P, Renaud SJ, et al. HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia. Proceedings of the National Academy of Sciences. 2016;113(46):E7212-E21. [DOI:10.1073/pnas.1612626113] [PMID] []
202. Rosario GX, Konno T, Soares MJ. Maternal hypoxia activates endovascular trophoblast cell invasion. Developmental biology. 2008;314(2):362-75. [DOI:10.1016/j.ydbio.2007.12.007] [PMID] []
203. Nezhat C, Rambhatla A, Miranda-Silva C, Asiaii A, Nguyen K, Eyvazzadeh A, et al. BCL-6 overexpression as a predictor for endometriosis in patients undergoing in vitro fertilization. JSLS: Journal of the Society of Laparoscopic & Robotic Surgeons. 2020;24(4). [DOI:10.4293/JSLS.2020.00064] [PMID] []
204. Prapas Y, Goudakou M, Matalliotakis I, Kalogeraki A, Matalliotaki C, Panagiotidis Y, et al. History of endometriosis may adversely affect the outcome in menopausal recipients of sibling oocytes. Reproductive biomedicine online. 2012;25(5):543-8. [DOI:10.1016/j.rbmo.2012.07.020] [PMID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به {مجله تحقيقات پزشكي صارم} می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | {Sarem Journal of Medicine Research}

Designed & Developed by : Yektaweb