1. Chuwdhury GS, Guo Y, Chiang CL, Lam KO, Kam NW, Liu Z, Dai W. ImmuneMirror: A machine learning-based integrative pipeline and web server for neoantigen prediction. Brief Bioinform. 2024;25(2). [
DOI:10.1093/bib/bbae024] [
PMID] [
]
2. Fang M, Fang J, Luo S, Liu K, Yu Q, Yang J, et al. eccDNA-pipe: an integrated pipeline for identification, analysis and visualization of extrachromosomal circular DNA from high-throughput sequencing data. Brief Bioinform. 2024;25(2). [
DOI:10.1093/bib/bbae034] [
PMID] [
]
3. Guo LX, Wang L, You ZH, Yu CQ, Hu ML, Zhao BW, Li Y. Likelihood-based feature representation learning combined with neighborhood information for predicting circRNA-miRNA associations. Brief Bioinform. 2024;25(2). [
DOI:10.1093/bib/bbae020] [
PMID] [
]
4. Han S, Lee JE, Kang S, So M, Jin H, Lee JH, et al. Standigm ASK™: knowledge graph and artificial intelligence platform applied to target discovery in idiopathic pulmonary fibrosis. Brief Bioinform. 2024;25(2). [
DOI:10.1093/bib/bbae035] [
PMID] [
]
5. Meng J, Liu J, Song W, Li H, Wang J, Zhang L, et al. PREDAC-CNN: predicting antigenic clusters of seasonal influenza A viruses with convolutional neural network. Brief Bioinform. 2024;25(2). [
DOI:10.1093/bib/bbae033] [
PMID] [
]
6. Park Y, Muttray NP, Hauschild AC. Species-agnostic transfer learning for cross-species transcriptomics data integration without gene orthology. Brief Bioinform. 2024;25(2). [
DOI:10.1093/bib/bbae004] [
PMID] [
]
7. Wei Q, Islam MT, Zhou Y, Xing L. Self-supervised deep learning of gene-gene interactions for improved gene expression recovery. Brief Bioinform. 2024;25(2). [
DOI:10.1093/bib/bbae031] [
PMID] [
]
8. Kang Z, Zhao YX, Qiu RSQ, Chen DN, Zheng QS, Xue XY, et al. Identification macrophage signatures in prostate cancer by single-cell sequencing and machine learning. Cancer Immunol Immunother. 2024;73(3):41. [
DOI:10.1007/s00262-024-03633-5] [
PMID] [
]
9. Qiu L, Sun Y, Ning H, Chen G, Zhao W, Gao Y. The scaffold protein AXIN1: gene ontology, signal network, and physiological function. Cell Commun Signal. 2024;22(1):77. [
DOI:10.1186/s12964-024-01482-4] [
PMID] [
]
10. Zhao X, Qiu T, Huang X, Mao Q, Wang Y, Qiao R, et al. Potent and broadly neutralizing antibodies against sarbecoviruses induced by sequential COVID-19 vaccination. Cell Discov. 2024;10(1):14. [
DOI:10.1038/s41421-024-00648-1] [
PMID] [
]
11. Bao X, Li Q, Chen D, Dai X, Liu C, Tian W, et al. A multiomics analysis-assisted deep learning model identifies a macrophage-oriented module as a potential therapeutic target in colorectal cancer. Cell Rep Med. 2024:101399. [
DOI:10.1016/j.xcrm.2024.101399] [
PMID] [
]
12. Grossman MK, Rankin DA, Maloney M, Stanton RA, Gable P, Stevens VA, et al. Extensively Drug-Resistant Pseudomonas aeruginosa Outbreak associated with Artificial Tears. Clin Infect Dis. 2024.
13. Karas S, Mathijssen RHJ, van Schaik RHN, Forrest A, Wiltshire T, Bies RR, Innocenti F. Model-Based Prediction of Irinotecan-Induced Grade 4 Neutropenia in Cancer Patients: Influence of Incorporating Germline Genetic Factors in the Model. Clin Pharmacol Ther. 2024. [
DOI:10.1002/cpt.3190] [
PMID]
14. Guo H, Su Y, Zhang R, Hu X, Zhu H, Yan X, et al. Evaluation of on- and off-target effects of self-assembled epidermal growth factor receptor small interfering RNA delivery system. Clin Transl Med. 2024;14(2):e1579. [
DOI:10.1002/ctm2.1579] [
PMID] [
]
15. Lee S, Kim G, Karin EL, Mirdita M, Park S, Chikhi R, et al. Petabase-Scale Homology Search for Structure Prediction. Cold Spring Harb Perspect Biol. 2024. [
DOI:10.1101/2023.07.10.548308]
16. Sousa RT, Silva S, Pesquita C. Explaining protein-protein interactions with knowledge graph-based semantic similarity. Comput Biol Med. 2024;170:108076. [
DOI:10.1016/j.compbiomed.2024.108076] [
PMID]
17. Vilhekar RS, Rawekar A. Artificial Intelligence in Genetics. Cureus. 2024;16(1):e52035. [
DOI:10.7759/cureus.52035] [
PMID] [
]
18. Qiu Y, Cheng F. Artificial intelligence for drug discovery and development in Alzheimer's disease. Curr Opin Struct Biol. 2024;85:102776. [
DOI:10.1016/j.sbi.2024.102776] [
PMID]
19. Margetts TJ, Wang HS, Karnik SJ, Plotkin LI, Movila A, Oblak AL, et al. From the Mind to the Spine: The Intersecting World of Alzheimer's and Osteoporosis. Curr Osteoporos Rep. 2024. [
DOI:10.1007/s11914-023-00848-w] [
PMID] [
]
20. Prajapati RN, Bhushan B, Singh K, Chopra H, Kumar S, Agrawal M, et al. Recent Advances in Pharmaceutical Design: Unleashing the Potential of Novel Therapeutics. Curr Pharm Biotechnol. 2024. [
DOI:10.2174/0113892010275850240102105033] [
PMID]
21. Liu X, Liu X, Huang N, Yang Z, Zhang Z, Zhuang Z, et al. Women's reproductive risk and genetic predisposition in type 2 diabetes: A prospective cohort study. Diabetes Res Clin Pract. 2024;208:111121. [
DOI:10.1016/j.diabres.2024.111121] [
PMID]
22. Teixeira PF, Battelino T, Carlsson A, Gudbjörnsdottir S, Hannelius U, von Herrath M, et al. Assisting the implementation of screening for type 1 diabetes by using artificial intelligence on publicly available data. Diabetologia. 2024. [
DOI:10.1007/s00125-024-06089-5] [
PMID] [
]
23. Udaypal, Goswami RK, Mehariya S, Verma P. Advances in microalgae-based carbon sequestration: Current status and future perspectives. Environ Res. 2024;249:118397. [
DOI:10.1016/j.envres.2024.118397] [
PMID]
24. Echecopar C, Abad I, Galán-Gómez V, Mozo Del Castillo Y, Sisinni L, Bueno D, et al. An artificial intelligence-driven predictive model for pediatric allogeneic hematopoietic stem cell transplantation using clinical variables. Eur J Haematol. 2024. [
DOI:10.1111/ejh.14184] [
PMID]
25. Geraghty RM, Thakur A, Howles S, Finch W, Fowler S, Rogers A, et al. Use of Temporally Validated Machine Learning Models To Predict Outcomes of Percutaneous Nephrolithotomy Using Data from the British Association of Urological Surgeons Percutaneous Nephrolithotomy Audit. Eur Urol Focus. 2024. [
DOI:10.1016/j.euf.2024.01.011] [
PMID]
26. Singh H, Nim DK, Randhawa AS, Ahluwalia S. Integrating clinical pharmacology and artificial intelligence: potential benefits, challenges, and role of clinical pharmacologists. Expert Rev Clin Pharmacol. 2024. [
DOI:10.1080/17512433.2024.2317963] [
PMID]
27. Braithwaite AT, Akbar N, Pezzolla D, Paget D, Krausgruber T, Bock C, et al. Multi-organ single-cell RNA sequencing in mice reveals early hyperglycemia responses that converge on fibroblast dysregulation. Faseb j. 2024;38(3):e23448. [
DOI:10.1096/fj.202302003R] [
PMID] [
]
28. Gibbons T, Rahmioglu N, Zondervan KT, Becker CM. Crimson clues: advancing endometriosis detection and management with novel blood biomarkers. Fertil Steril. 2024;121(2):145-63. [
DOI:10.1016/j.fertnstert.2023.12.018] [
PMID]
29. Kumar A, Kouznetsova VL, Kesari S, Tsigelny IF. Parkinson's Disease Diagnosis Using miRNA Biomarkers and Deep Learning. Front Biosci (Landmark Ed). 2024;29(1):4. [
DOI:10.31083/j.fbl2901004] [
PMID]
30. Sun Y, Li Z, Wang Z, He X, Yu S, Hu L, et al. Association of 10 Genetic Variations and 10 Environmental Factors with Myopia of Different Severities in Different Age Groups of People in Northeast China. Front Biosci (Landmark Ed). 2024;29(1):9. [
DOI:10.31083/j.fbl2901009] [
PMID]
31. Zhang Y, Yu J, Xie X, Jiang F, Wu C. Application of Genomic Data in Translational Medicine During the Big Data Era. Front Biosci (Landmark Ed). 2024;29(1):7. [
DOI:10.31083/j.fbl2901007] [
PMID]
32. García-Cruz JC, Rebollar-Juarez X, Limones-Martinez A, Santos-Lopez CS, Toya S, Maeda T, et al. Resistance against two lytic phage variants attenuates virulence and antibiotic resistance in Pseudomonas aeruginosa. Front Cell Infect Microbiol. 2023;13:1280265. [
DOI:10.3389/fcimb.2023.1280265] [
PMID] [
]
33. Chen C, Xie Z, Ni Y, He Y. Screening immune-related blood biomarkers for DKD-related HCC using machine learning. Front Immunol. 2024;15:1339373. [
DOI:10.3389/fimmu.2024.1339373] [
PMID] [
]
34. Guo XG, Zhang YJ, Lu YX, Lu JM, Zhang J, Li HX, et al. Causal association between genetically predicted circulating immune cell counts and frailty: a two-sample Mendelian randomization study. Front Immunol. 2024;15:1336498. [
DOI:10.3389/fimmu.2024.1336498] [
PMID] [
]
35. Dakilah I, Harb A, Abu-Gharbieh E, El-Huneidi W, Taneera J, Hamoudi R, et al. Potential of CDC25 phosphatases in cancer research and treatment: key to precision medicine. Front Pharmacol. 2024;15:1324001. [
DOI:10.3389/fphar.2024.1324001] [
PMID] [
]
36. Rehman A, Mujahid M, Saba T, Jeon G. Optimised stacked machine learning algorithms for genomics and genetics disorder detection in the healthcare industry. Funct Integr Genomics. 2024;24(1):23. [
DOI:10.1007/s10142-024-01289-z] [
PMID]
37. Fazal S, Danzi MC, Xu I, Kobren SN, Sunyaev S, Reuter C, et al. RExPRT: a machine learning tool to predict pathogenicity of tandem repeat loci. Genome Biol. 2024;25(1):39. [
DOI:10.1186/s13059-024-03171-4] [
PMID] [
]
38. Ball RL, Bogue MA, Liang H, Srivastava A, Ashbrook DG, Lamoureux A, et al. GenomeMUSter mouse genetic variation service enables multitrait, multipopulation data integration and analysis. Genome Res. 2024;34(1):145-59. [
DOI:10.1101/gr.278157.123] [
PMID] [
]
39. Dong X, Li Q, Wang X, He Y, Zeng D, Chu L, et al. How brain structure-function decoupling supports individual cognition and its molecular mechanism. Hum Brain Mapp. 2024;45(2):e26575. [
DOI:10.1002/hbm.26575] [
PMID] [
]
40. Ojewunmi OO, Adeyemo TA, Oyetunji AI, Inyang B, Akinrindoye A, Mkumbe BS, et al. The genetic dissection of fetal haemoglobin persistence in sickle cell disease in Nigeria. Hum Mol Genet. 2024. [
DOI:10.1101/2023.05.16.23289851] [
PMID] [
]
41. Akshay A, Besic M, Kuhn A, Burkhard FC, Bigger-Allen A, Adam RM, et al. Machine Learning-Based Classification of Transcriptome Signatures of Non-Ulcerative Bladder Pain Syndrome. Int J Mol Sci. 2024;25(3). [
DOI:10.3390/ijms25031568] [
PMID] [
]
42. Kim SH, Yu SY, Choo JH, Kim J, Ahn K, Hwang SY. Epigenetic Methylation Changes in Pregnant Women: Bisphenol Exposure and Atopic Dermatitis. Int J Mol Sci. 2024;25(3). [
DOI:10.3390/ijms25031579] [
PMID] [
]
43. Ziehe D, Marko B, Thon P, Rahmel T, Palmowski L, Nowak H, et al. The Aquaporin 3 Polymorphism (rs17553719) Is Associated with Sepsis Survival and Correlated with IL-33 Secretion. Int J Mol Sci. 2024;25(3). [
DOI:10.3390/ijms25031400] [
PMID] [
]
44. Hedlund Lindberg J, Widgren A, Ivansson E, Gustavsson I, Stålberg K, Gyllensten U, et al. Toward ovarian cancer screening with protein biomarkers using dried, self-sampled cervico-vaginal fluid. iScience. 2024;27(2):109001. [
DOI:10.1016/j.isci.2024.109001] [
PMID] [
]
45. Dai Y, Hsu YC, Fernandes BS, Zhang K, Li X, Enduru N, et al. Disentangling Accelerated Cognitive Decline from the Normal Aging Process and Unraveling Its Genetic Components: A Neuroimaging-Based Deep Learning Approach. J Alzheimers Dis. 2024. [
DOI:10.21203/rs.3.rs-3328861/v1]
46. Kolahi Azar H, Gharibshahian M, Rostami M, Mansouri V, Sabouri L, Beheshtizadeh N, Rezaei N. The progressive trend of modeling and drug screening systems of breast cancer bone metastasis. J Biol Eng. 2024;18(1):14. [
DOI:10.1186/s13036-024-00408-5] [
PMID] [
]
47. Haghir Ebrahim Abadi MH, Ghasemlou A, Bayani F, Sefidbakht Y, Vosough M, Mozaffari-Jovin S, Uversky VN. AI-driven covalent drug design strategies targeting main protease (m(pro)) against SARS-CoV-2: structural insights and molecular mechanisms. J Biomol Struct Dyn. 2024:1-29. [
DOI:10.1080/07391102.2024.2308769] [
PMID]
48. Watanabe K, Chiou TY, Konishi M. Optimization of medium components for protein production by Escherichia coli with a high-throughput pipeline that uses a deep neural network. J Biosci Bioeng. 2024. [
DOI:10.1016/j.jbiosc.2024.01.005] [
PMID]
49. Samartha MVS, Dubey NK, Jena B, Maheswar G, Lo WC, Saxena S. AI-driven estimation of O6 methylguanine-DNA-methyltransferase (MGMT) promoter methylation in glioblastoma patients: a systematic review with bias analysis. J Cancer Res Clin Oncol. 2024;150(2):57. [
DOI:10.1007/s00432-023-05566-5] [
PMID] [
]
50. Asteris PG, Gandomi AH, Armaghani DJ, Tsoukalas MZ, Gavriilaki E, Gerber G, et al. Genetic justification of COVID-19 patient outcomes using DERGA, a novel data ensemble refinement greedy algorithm. J Cell Mol Med. 2024;28(4):e18105. [
DOI:10.1111/jcmm.18105] [
PMID] [
]
51. Qureshi MA. Integration of Next Generation Sequencing, Artificial Intelligence and Machine Learning in Cancer Diagnostics: A Major Leap Forward. J Coll Physicians Surg Pak. 2024;34(2):127-8. [
DOI:10.29271/jcpsp.2024.02.127] [
PMID]
52. Muzammil MA, Javid S, Afridi AK, Siddineni R, Shahabi M, Haseeb M, et al. Artificial intelligence-enhanced electrocardiography for accurate diagnosis and management of cardiovascular diseases. J Electrocardiol. 2024;83:30-40. [
DOI:10.1016/j.jelectrocard.2024.01.006] [
PMID]
53. Obi CC, Nwabanne JT, Igwegbe CA, Abonyi MN, Umembamalu CJ, Kamuche TT. Intelligent algorithms-aided modeling and optimization of the deturbidization of abattoir wastewater by electrocoagulation using aluminium electrodes. J Environ Manage. 2024;353:120161. [
DOI:10.1016/j.jenvman.2024.120161] [
PMID]
54. Kim D, Lee E, Eom J, Kim Y, Kwon SH, Oh HS, et al. Prevalence and Burden of Human Adenovirus-Associated Acute Respiratory Illness in the Republic of Korea Military, 2013 to 2022. J Korean Med Sci. 2024;39(4):e38. [
DOI:10.3346/jkms.2024.39.e38] [
PMID] [
]
55. Kim J, Choi YS, Lee YJ, Yeo SG, Kim KW, Kim MS, et al. Limitations of the Cough Sound-Based COVID-19 Diagnosis Artificial Intelligence Model and its Future Direction: Longitudinal Observation Study. J Med Internet Res. 2024;26:e51640. [
DOI:10.2196/51640] [
PMID] [
]
56. Feng X, Shu W, Li M, Li J, Xu J, He M. Pathogenomics for accurate diagnosis, treatment, prognosis of oncology: a cutting edge overview. J Transl Med. 2024;22(1):131. [
DOI:10.1186/s12967-024-04915-3] [
PMID] [
]
57. Taylor J, Thomas R, Metherall P, van Gastel M, Cornec-Le Gall E, Caroli A, et al. An Artificial Intelligence Generated Automated Algorithm to Measure Total Kidney Volume in ADPKD. Kidney Int Rep. 2024;9(2):249-56. [
DOI:10.1016/j.ekir.2023.10.029] [
PMID] [
]
58. Wang Q, He L. [Genetic counseling for hearing loss today]. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2024;38(1):1-7.
59. Wang H, Zeng W, Huang X, Liu Z, Sun Y, Zhang L. MTTLm(6)A: A multi-task transfer learning approach for base-resolution mRNA m(6)A site prediction based on an improved transformer. Math Biosci Eng. 2024;21(1):272-99. [
DOI:10.3934/mbe.2024013] [
PMID]
60. Seriramulu VP, Suppiah S, Lee HH, Jang JH, Omar NF, Mohan SN, et al. Review of MR spectroscopy analysis and artificial intelligence applications for the detection of cerebral inflammation and neurotoxicity in Alzheimer's disease. Med J Malaysia. 2024;79(1):102-10.
61. Rochefort J, Radoi L, Campana F, Fricain JC, Lescaille G. [Oral cavity cancer: A distinct entity]. Med Sci (Paris). 2024;40(1):57-63. [
DOI:10.1051/medsci/2023196] [
PMID]
62. Wu C, Luo J, Xiao Y. Multi-omics assists genomic prediction of maize yield with machine learning approaches. Mol Breed. 2024;44(2):14. [
DOI:10.1007/s11032-024-01454-z] [
PMID] [
]
63. Rade M, Kreuz M, Borkowetz A, Sommer U, Blumert C, Füssel S, et al. A reliable transcriptomic risk-score applicable to formalin-fixed paraffin-embedded biopsies improves outcome prediction in localized prostate cancer. Mol Med. 2024;30(1):19. [
DOI:10.1186/s10020-024-00789-9] [
PMID] [
]
64. El Nahhas OSM, Loeffler CML, Carrero ZI, van Treeck M, Kolbinger FR, Hewitt KJ, et al. Regression-based Deep-Learning predicts molecular biomarkers from pathology slides. Nat Commun. 2024;15(1):1253.
https://doi.org/10.1038/s41467-024-45589-1 [
DOI:10.1038/s41467-024-46298-5] [
PMID] [
]
65. Geuenich MJ, Gong DW, Campbell KR. The impacts of active and self-supervised learning on efficient annotation of single-cell expression data. Nat Commun. 2024;15(1):1014. [
DOI:10.1038/s41467-024-45198-y] [
PMID] [
]
66. Matzinger M, Schmücker A, Yelagandula R, Stejskal K, Krššáková G, Berger F, et al. Micropillar arrays, wide window acquisition and AI-based data analysis improve comprehensiveness in multiple proteomic applications. Nat Commun. 2024;15(1):1019. [
DOI:10.1038/s41467-024-45391-z] [
PMID] [
]
67. Xie WJ, Warshel A. Harnessing generative AI to decode enzyme catalysis and evolution for enhanced engineering. Natl Sci Rev. 2023;10(12):nwad331. [
DOI:10.1093/nsr/nwad331] [
PMID] [
]
68. Tian J, Tong D, Li Z, Wang E, Yu Y, Lv H, et al. Mage transposon: a novel gene delivery system for mammalian cells. Nucleic Acids Res. 2024. [
DOI:10.1093/nar/gkae048] [
PMID] [
]
69. Shatalov PA, Falaleeva NA, Bykova EA, Korostin DO, Belova VA, Zabolotneva AA, et al. Genetic and therapeutic landscapes in cohort of pancreatic adenocarcinomas: next-generation sequencing and machine learning for full tumor exome analysis. Oncotarget. 2024;15:91-103. [
DOI:10.18632/oncotarget.28512] [
PMID] [
]
70. Faviez C, Vincent M, Garcelon N, Boyer O, Knebelmann B, Heidet L, et al. Performance and clinical utility of a new supervised machine-learning pipeline in detecting rare ciliopathy patients based on deep phenotyping from electronic health records and semantic similarity. Orphanet J Rare Dis. 2024;19(1):55. [
DOI:10.1186/s13023-024-03063-7] [
PMID] [
]
71. Kim K, Jang HJ, Baek S, Ahn SH. Rosae multiflorae fructus regulates the lipogenesis in high-fat diet-induced NAFLD mice model. Phys Act Nutr. 2023;27(4):55-9. [
DOI:10.20463/pan.2023.0038] [
PMID] [
]
72. Novick KA, Ficklin DL, Grossiord C, Konings AG, Martínez-Vilalta J, Sadok W, et al. The impacts of rising vapour pressure deficit in natural and managed ecosystems. Plant Cell Environ. 2024. [
DOI:10.1111/pce.14846] [
PMID]
73. Chen Y, Wang J, Wang C, Zou Q. AutoEdge-CCP: A novel approach for predicting cancer-associated circRNAs and drugs based on automated edge embedding. PLoS Comput Biol. 2024;20(1):e1011851. [
DOI:10.1371/journal.pcbi.1011851] [
PMID] [
]
74. Kozielska M, Weissing FJ. A neural network model for the evolution of learning in changing environments. PLoS Comput Biol. 2024;20(1):e1011840. [
DOI:10.1371/journal.pcbi.1011840] [
PMID] [
]
75. Khongwirotphan S, Oonsiri S, Kitpanit S, Prayongrat A, Kannarunimit D, Chakkabat C, et al. Multimodality radiomics for tumor prognosis in nasopharyngeal carcinoma. PLoS One. 2024;19(2):e0298111. [
DOI:10.1371/journal.pone.0298111] [
PMID] [
]
76. Li J, Meng M, Liu X, Lv Y, Yu J. Evaluation and screening of technology start-ups based on PCA and GA-BPNN. PLoS One. 2024;19(2):e0289691. [
DOI:10.1371/journal.pone.0289691] [
PMID] [
]
77. Sinkala M, Naran K, Ramamurthy D, Mungra N, Dzobo K, Martin D, Barth S. Machine learning and bioinformatic analyses link the cell surface receptor transcript levels to the drug response of breast cancer cells and drug off-target effects. PLoS One. 2024;19(2):e0296511. [
DOI:10.1371/journal.pone.0296511] [
PMID] [
]
78. Papaioannou C. Advancements in the treatment of age-related macular degeneration: a comprehensive review. Postgrad Med J. 2024. [
DOI:10.1093/postmj/qgae016] [
PMID]
79. Pun MN, Ivanov A, Bellamy Q, Montague Z, LaMont C, Bradley P, et al. Learning the shape of protein microenvironments with a holographic convolutional neural network. Proc Natl Acad Sci U S A. 2024;121(6):e2300838121. [
DOI:10.1073/pnas.2300838121] [
PMID] [
]
80. Sengupta P, Dutta S, Jegasothy R, Slama P, Cho CL, Roychoudhury S. 'Intracytoplasmic sperm injection (ICSI) paradox' and 'andrological ignorance': AI in the era of fourth industrial revolution to navigate the blind spots. Reprod Biol Endocrinol. 2024;22(1):22. [
DOI:10.1186/s12958-024-01193-y] [
PMID] [
]
81. Xie R, Cao Y, Sun R, Wang R, Morgan A, Kim J, et al. Magnetically driven formation of 3D freestanding soft bioscaffolds. Sci Adv. 2024;10(5):eadl1549. [
DOI:10.1126/sciadv.adl1549] [
PMID] [
]
82. Chen KA, Nishiyama NC, Kennedy Ng MM, Shumway A, Joisa CU, Schaner MR, et al. Linking gene expression to clinical outcomes in pediatric Crohn's disease using machine learning. Sci Rep. 2024;14(1):2667. [
DOI:10.1038/s41598-024-52678-0] [
PMID] [
]
83. Khandia R, Gurjar P, Kamal MA, Greig NH. Relative synonymous codon usage and codon pair analysis of depression associated genes. Sci Rep. 2024;14(1):3502. [
DOI:10.1038/s41598-024-51909-8] [
PMID] [
]
84. Mahmud SMH, Goh KOM, Hosen MF, Nandi D, Shoombuatong W. Deep-WET: a deep learning-based approach for predicting DNA-binding proteins using word embedding techniques with weighted features. Sci Rep. 2024;14(1):2961. [
DOI:10.1038/s41598-024-52653-9] [
PMID] [
]
85. Djebko K, Weidner D, Waleska M, Krey T, Rausch S, Seipel D, Puppe F. Integrated Simulation and Calibration Framework for Heating System Optimization. Sensors (Basel). 2024;24(3). [
DOI:10.3390/s24030886] [
PMID] [
]
86. Zhang J, Feng S, Chen M, Zhang W, Zhang X, Wang S, et al. Identification of potential crucial genes shared in psoriasis and ulcerative colitis by machine learning and integrated bioinformatics. Skin Res Technol. 2024;30(2):e13574. [
DOI:10.1111/srt.13574] [
PMID] [
]
87. Parvin S, Nimmy SF, Kamal MS. Convolutional neural network based data interpretable framework for Alzheimer's treatment planning. Vis Comput Ind Biomed Art. 2024;7(1):3. [
DOI:10.1186/s42492-024-00154-x] [
PMID] [
]
88. Lu W, Zhou Y, Zhao R, Liu Q, Yang W, Zhu T. The integration of multi-omics analysis and machine learning for the identification of prognostic assessment and immunotherapy efficacy through aging-associated genes in lung cancer. Aging (Albany NY). 2024;16(2):1860-78. [
DOI:10.18632/aging.205464] [
PMID] [
]
89. Wang AY, Lin S, Tran C, Homer RJ, Wilsdon D, Walsh JC, et al. Assessment of Pathology Domain-Specific Knowledge of ChatGPT and Comparison to Human Performance. Arch Pathol Lab Med. 2024. [
DOI:10.5858/arpa.2023-0296-OA] [
PMID]
90. Zhang L, Wang F, Xia K, Yu Z, Fu Y, Huang T, Fan D. Unlocking the Medicinal Mysteries: Preventing Lacunar Stroke with Drug Repurposing. Biomedicines. 2023;12(1). [
DOI:10.3390/biomedicines12010017] [
PMID] [
]
91. Cui H, Srinivasan S, Gao Z, Korkin D. The Extent of Edgetic Perturbations in the Human Interactome Caused by Population-Specific Mutations. Biomolecules. 2023;14(1). [
DOI:10.3390/biom14010040] [
PMID] [
]
92. Giordano M, Falbo E, Maddalena L, Piccirillo M, Granata I. Untangling the Context-Specificity of Essential Genes by Means of
93. Machine Learning: A Constructive Experience. Biomolecules. 2023;14(1).
94. Lauria G, Curcio R, Tucci P. A Machine Learning Approach for Highlighting microRNAs as Biomarkers Linked to Amyotrophic Lateral Sclerosis Diagnosis and Progression. Biomolecules. 2023;14(1). [
DOI:10.3390/biom14010047] [
PMID] [
]
95. Gonzalez G, Herath I, Veselkov K, Bronstein M, Zitnik M. Combinatorial prediction of therapeutic perturbations using causally-inspired neural networks. bioRxiv. 2024. [
DOI:10.1101/2024.01.03.573985]
96. Niu M, Wang C, Zhang Z, Zou Q. A computational model of circRNA-associated diseases based on a graph neural network: prediction and case studies for follow-up experimental validation. BMC Biol. 2024;22(1):24. [
DOI:10.1186/s12915-024-01826-z] [
PMID] [
]
97. Ye C, Wu Q, Chen S, Zhang X, Xu W, Wu Y, et al. ECDEP: identifying essential proteins based on evolutionary community discovery and subcellular localization. BMC Genomics. 2024;25(1):117. [
DOI:10.1186/s12864-024-10019-5] [
PMID] [
]
98. Talaat FM, El-Sappagh S, Alnowaiser K, Hassan E. Improved prostate cancer diagnosis using a modified ResNet50-based deep learning architecture. BMC Med Inform Decis Mak. 2024;24(1):23. [
DOI:10.1186/s12911-024-02419-0] [
PMID] [
]
99. Hang Y, Qu H, Yang J, Li Z, Ma S, Tang C, et al. Exploration of programmed cell death-associated characteristics and immune infiltration in neonatal sepsis: new insights from bioinformatics analysis and machine learning. BMC Pediatr. 2024;24(1):67. [
DOI:10.1186/s12887-024-04555-y] [
PMID] [
]
100. Bourached A, Bonkhoff AK, Schirmer MD, Regenhardt RW, Bretzner M, Hong S, et al. Scaling behaviours of deep learning and linear algorithms for the prediction of stroke severity. Brain Commun. 2024;6(1):fcae007. [
DOI:10.1093/braincomms/fcae007] [
PMID] [
]
101. Gu S, Wen C, Xiao Z, Huang Q, Jiang Z, Liu H, et al. MyoV: a deep learning-based tool for the automated quantification of muscle fibers. Brief Bioinform. 2024;25(2). [
DOI:10.1093/bib/bbad528] [
PMID] [
]
102. Maestri S, Furlan M, Mulroney L, Coscujuela Tarrero L, Ugolini C, Dalla Pozza F, et al. Benchmarking of computational methods for m6A profiling with Nanopore direct RNA sequencing. Brief Bioinform. 2024;25(2). [
DOI:10.1093/bib/bbae001] [
PMID] [
]
103. von Itzstein MS, Gwin ME, Gupta A, Gerber DE. Telemedicine and Cancer Clinical Research: Opportunities for Transformation. Cancer J. 2024;30(1):22-6. [
DOI:10.1097/PPO.0000000000000695] [
PMID] [
]
104. Zhao Y, Dimou A, Fogarty ZC, Jiang J, Liu H, Wong WB, Wang C. Real-world Trends, Rural-urban Differences, and Socioeconomic Disparities in Utilization of Narrow versus Broad Next-generation Sequencing Panels. Cancer Res Commun. 2024;4(2):303-11. [
DOI:10.1158/2767-9764.CRC-23-0190] [
PMID] [
]
105. Liang Q, Jing H, Shao Y, Wang Y, Zhang H. Artificial Intelligence Imaging for Predicting High-risk Molecular Markers of Gliomas. Clin Neuroradiol. 2024. [
DOI:10.1007/s00062-023-01375-y] [
PMID]
106. Liu H, Zhang Y, Luo J. Contrastive learning-based histopathological features infer molecular subtypes and clinical outcomes of breast cancer from unannotated whole slide images. Comput Biol Med. 2024;170:107997. [
DOI:10.1016/j.compbiomed.2024.107997] [
PMID]
107. Gashkarimov VR, Sultanova RI, Efremov IS, Asadullin AR. Machine learning techniques in diagnostics and prediction of the clinical features of schizophrenia: a narrative review. Consort Psychiatr. 2023;4(3):43-53. [
DOI:10.17816/CP11030] [
PMID] [
]
108. Ibrahim S, Reeskamp LF, de Goeij JN, Hovingh GK, Planken RN, Bax WA, et al. Beyond Early LDL Cholesterol Lowering to Prevent Coronary Atherosclerosis in Familial Hypercholesterolemia. Eur J Prev Cardiol. 2024. [
DOI:10.1093/eurjpc/zwae028] [
PMID]
109. Pesapane F, Rotili A, Raimondi S, Aurilio G, Lazzeroni M, Nicosia L, et al. Evolving paradigms in breast cancer screening: Balancing efficacy, personalization, and equity. Eur J Radiol. 2024;172:111321. [
DOI:10.1016/j.ejrad.2024.111321] [
PMID]
110. Qian L, Wu T, Kong S, Lou X, Jiang Y, Tan Z, et al. Could the underlying biological basis of prognostic radiomics and deep learning signatures be explored in patients with lung cancer? A systematic review. Eur J Radiol. 2024;171:111314. [
DOI:10.1016/j.ejrad.2024.111314] [
PMID]
111. Fu Y, Liu Y, Song W, Yang D, Wu W, Lin J, et al. Early monitoring-to-warning Internet of Things system for emerging infectious diseases via networking of light-triggered point-of-care testing devices. Exploration (Beijing). 2023;3(6):20230028. [
DOI:10.1002/EXP.20230028] [
PMID] [
]
112. Pribić M, Kamenko I, Despotović S, Mirosavljević M, Pejin J. Modeling and Optimization of Triticale Wort Production Using an Artificial Neural Network and a Genetic Algorithm. Foods. 2024;13(2). [
DOI:10.3390/foods13020343] [
PMID] [
]
113. Wang H, Zhu Q, Huang Y, Cao Y, Hu Y, Wei Y, et al. Using simulated microhaplotype genotyping data to evaluate the value of machine learning algorithms for inferring DNA mixture contributor numbers. Forensic Sci Int Genet. 2024;69:103008. [
DOI:10.1016/j.fsigen.2024.103008] [
PMID]
114. Dixit S, Kumar A, Srinivasan K, Vincent P, Ramu Krishnan N. Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions. Front Bioeng Biotechnol. 2023;11:1335901. [
DOI:10.3389/fbioe.2023.1335901] [
PMID] [
]
115. Geng Y, Liu Y, Wang M, Dong X, Sun X, Luo Y, Sun X. Identification and validation of platelet-related diagnostic markers and potential drug screening in ischemic stroke by integrating comprehensive bioinformatics analysis and machine learning. Front Immunol. 2023;14:1320475. [
DOI:10.3389/fimmu.2023.1320475] [
PMID] [
]
116. Huang P, Song Y, Yang Y, Bai F, Li N, Liu D, et al. Identification and verification of diagnostic biomarkers based on mitochondria-related genes related to immune microenvironment for preeclampsia using machine learning algorithms. Front Immunol. 2023;14:1304165. [
DOI:10.3389/fimmu.2023.1304165] [
PMID] [
]
117. Ji HL, Xi NMS, Mohan C, Yan X, Jain KG, Zang QS, et al. Biomarkers and molecular endotypes of sarcoidosis: lessons from omics and non-omics studies. Front Immunol. 2023;14:1342429. [
DOI:10.3389/fimmu.2023.1342429] [
PMID] [
]
118. Furriel B, Oliveira BD, Prôa R, Paiva JQ, Loureiro RM, Calixto WP, et al. Artificial intelligence for skin cancer detection and classification for clinical environment: a systematic review. Front Med (Lausanne). 2023;10:1305954. [
DOI:10.3389/fmed.2023.1305954] [
PMID] [
]
119. Javan GT, Singh K, Finley SJ, Green RL, Sen CK. Complexity of human death: its physiological, transcriptomic, and microbiological implications. Front Microbiol. 2023;14:1345633. [
DOI:10.3389/fmicb.2023.1345633] [
PMID] [
]
120. Krishnamurthy K, Pradhan RK. Emerging perspectives of synaptic biomarkers in ALS and FTD. Front Mol Neurosci. 2023;16:1279999. [
DOI:10.3389/fnmol.2023.1279999] [
PMID] [
]
121. Haraldsen IH, Hatlestad-Hall C, Marra C, Renvall H, Maestú F, Acosta-Hernández J, et al. Intelligent digital tools for screening of brain connectivity and dementia risk estimation in people affected by mild cognitive impairment: the AI-Mind clinical study protocol. Front Neurorobot. 2023;17:1289406. [
DOI:10.3389/fnbot.2023.1289406] [
PMID] [
]