1. A. Jemal, F. et al, "Global cancer statistics," CA: Cancer Journal for Clinicians,. 2011.69-90,. [
DOI:10.3322/caac.20107] [
PMID]
2. N. Hidetomo, et al., "Can anesthetic techniques or drugs affect cancer recurrence in patients undergoing cancer surgery?" Journal of Anesthesia,. 2013,731-741. [
DOI:10.1007/s00540-013-1615-7] [
PMID]
3. Fatemeh Javani Jouni1 , et al. Evaluation of Anti-Cancer Effects of Caspian Cobra (Naja naja oxiana) Snake Venom in Comparison with Doxorubicin in HeLa Cancer Cell Line and Normal HFF Fibroblast. 2022;29(6): 20-27. [
DOI:10.52547/sjimu.29.6.20]
4. Afsar B, et al. Renin angiotensin system and cancer: epidemiology cell signaling genetics and epigenetics. Clini Trans Oncol 2021; 82-96.
5. Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health.2019;9:217-22. [
DOI:10.2991/jegh.k.191008.001] [
PMID] [
]
6. Miller, K.D.; et al,. Cancer treatment and survivorship statistics, 2016. CA Cancer. J. Clin. 2016, 66, 271-289 [
DOI:10.3322/caac.21349] [
PMID]
7. M.C.Perry, C. et al,"Chemotherapy," in Clinical Oncology. 2000,379-422.
8. I. Adkins, H. et al, "Bacteria and their toxins tamed is immunotherapy," Current Pharmaceutical Biotechnologyp, vol. 13, pp. 2012,1446-1473 [
DOI:10.2174/138920112800784835] [
PMID]
9. Leonardo A., et al, Antitumoral Activity of Snake Venom Proteins: New Trends in Cancer Therapy 2014, 19 pages [
DOI:10.1155/2014/203639] [
PMID] [
]
10. Chan YS, et al. Snake venom toxins: toxicity and medicinal applications. Appl Microbiol Biotechnol. 2016, 65-81
11. Chippaux J-P, et al. Snake venom variability: methods of study, results and interpretation. 1991 279-303. [
DOI:10.1016/0041-0101(91)90116-9] [
PMID]
12. SAREH DORTAJ. The Toxic Components and the Clinical Uses of Snake Venom: A Review. 2021; 10(3):107-:112
13. Nolan, C,et al. Ancrod, the coagulating enzyme from Malayan pit viper (Agkistrodon rhodostoma) venom. Methods Enzym. 1976, 45, 205-213. [
DOI:10.1016/S0076-6879(76)45020-6] [
PMID]
14. Markland, F.S.; Damus, P.S. Purification and properties of a thrombin-like enzyme from the venom of Crotalus adamanteus. 1971, 246, 6460-6473. [
DOI:10.1016/S0021-9258(19)34138-9] [
PMID]
15. W. D. DeWys, et al "Effect of defibrination on tumor growth and response to chemotherapy," 1976,3584-3587,
16. Tarek Mohamed, et al. Snake Venoms in Drug Discovery: Valuable Therapeutic 2019-2-25-
17. Gopalakrishnakone, P.; Inagaki, H. Snake Venoms; Springer: Berlin, Germany, 2017.
18. Kumar, V.; et al. Anticholinesterase activity of elapid venoms. Toxicon 1973, 11, 131-138. [
DOI:10.1016/0041-0101(73)90074-3] [
PMID]
19. Ding, B.; et al. Antiplatelet aggregation and antithrombosis efficiency of peptides in the snake venom of deinagkistrodon acutus: Isolation, identification, and evaluation. Evid. Based Complement. 2015, 412841 [
DOI:10.1155/2015/412841] [
PMID] [
]
20. Li Li 1, el tal, Snake Venoms in Cancer Therapy: Past, Present and Future. Toxins 2018, 10, 346 [
DOI:10.3390/toxins10090346] [
PMID] [
]
21. Rabi u, et al, Major Enzymes from Snke Venoms: Mechanisms of Action and Pharmacological Applications.2019
22. Waheed, H.; et al. Snake Venom: From Deadly Toxins to Life-saving Therapeutics. Curr. Med. Chem. 2017, 24, 1874-1891 [
DOI:10.2174/0929867324666170605091546] [
PMID]
23. Tarek Mohamed Abd El-Aziz, Snake Venoms in Drug Discovery: Valuable Therapeutic 2019, 11, 564 [
DOI:10.3390/toxins11100564] [
PMID] [
]
24. Sanhajariya, S.; Duffull, S.; Isbister, G. Pharmacokinetics of snake venom. Toxins 2018, 10, 73 [
DOI:10.3390/toxins10020073] [
PMID] [
]
25. Vyas, vive kumar, et al. Therapeutic potential of snake venom in cancer therapy.2013, 156-162 [
DOI:10.1016/S2221-1691(13)60042-8] [
PMID]
26. Khusro A, etal. Snake venom as anticancer agent.2013, 24-29
27. Zouari-kessentini, Raoudha, Antitumoral potential of Tunisian snake venoms secreted phospholipases A2.Hindawi publishing corporation,2013,p.9 [
DOI:10.1155/2013/391389] [
PMID] [
]
28. Terra, A.L.C; et al. Biological characterization of the Amazon coral Micrurus spixii snake venom: Isolation of a new neurotoxic phospholipase A2. 2015, 103, 1-11. [
DOI:10.1016/j.toxicon.2015.06.011] [
PMID]
29. Cedro, R.C.A.; et al. Cytotoxic and inflammatory potential of a phospholipase A2 from Bothrops jararaca snake venom.. 2018, 24, 33 [
DOI:10.1186/s40409-018-0170-y] [
PMID] [
]
30. More, S.; et al. Purification of an L-amino acid oxidase from Bungarus caeruleus (Indian krait) venom. 2010, 16, 60-76 [
DOI:10.1590/S1678-91992010005000002]
31. Bordon, K.C.; et al. Isolation, enzymatic characterization and antiedematogenic activity of the first reported rattlesnake hyaluronidase from Crotalus durissus terrificus venom. Biochimi 2012, 94, 2740-2748 [
DOI:10.1016/j.biochi.2012.08.014] [
PMID]
32. Bhavya, J.; et al. Low-molecular weighthyaluronidase from the venom of Bungarus caeruleus (Indian common krait) snake: Isolation and partial characterization.. 2016, 39, 203-208. [
DOI:10.1080/10826076.2016.1144203]
33. G. Borkow, A. et al, "Binding of cytotoxin P4 from Naja nigricollis nigricollis to B16F10 melanoma and WEHI-3B leukemia cells,". 1992,139-146, [
DOI:10.1016/0378-1097(92)90084-2]
34. El-Aziz, T.M.A.; et al. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. 2019, 11, 564. [
DOI:10.3390/toxins11100564] [
PMID] [
]
35. Prashanth, J.R.; Hasaballah, N. Pharmacological Screening Technologies for Venom Peptide Discovery. Neuropharmacology. 2017, 127, 4-19. [
DOI:10.1016/j.neuropharm.2017.03.038] [
PMID]
36. Lucía Ageitos, et al, Biologically Active Peptides from Venoms: Applications in Antibiotic 2022, 23, 15437. [
DOI:10.3390/ijms232315437] [
PMID] [
]
37. Gargi Sarode, et al. Venoms and Oral Cancer: 2022,3-13 [
DOI:10.5005/jp-journals-10015-2041]
38. Liu DY, Yu CL, Liu QH. Development and the utilization of the biotoxins. Beijing: Chemical Industry Press; 2007.
39. de la Vega RCR, Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon 2005;46(8):831-844. [
DOI:10.1016/j.toxicon.2005.09.006] [
PMID]
40. Srairi-Abid N, et al. Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways. 2019;80:160-174. [
DOI:10.1016/j.ceca.2019.05.003] [
PMID]
41. Moga MA, et al. Anticancer activity of toxins from bee and snake venom: an overview on ovarian cancer. Molecules 2018;23(3):692. [
DOI:10.3390/molecules23030692] [
PMID] [
]
42. Santos MMDV, et al. Antitumoural effect of an L-amino acid oxidase isolated from Bothropsjararaca snake venom. Basic 2008;102(6):533-542. [
DOI:10.1111/j.1742-7843.2008.00229.x] [
PMID]
43. Dewys WD, Kwaan HC, Bathina S. Effect of defibrination on tumor growth and response to chemotherapy. Cancer Res 1976;36(10):3584-3587.
44. Chen J, Lariviere WR. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. 2010;92(2):151-183. [
DOI:10.1016/j.pneurobio.2010.06.006] [
PMID] [
]
45. Qiao L, Huang YF, Cao JQ, et al. One new bufadienolide from Chinese drug 'Chan'Su'. 2008;10(3-4):233-237. [
DOI:10.1080/10286020701603146]
46. Zhang DM, Liu JS, Deng LJ, et al. Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mtor pathway. Carcinogenesis 2013;34(6):1331-1342. [
DOI:10.1093/carcin/bgt060] [
PMID]
47. Crow, J.M. Venomous drugs: Captopril. New Sci. 2012, 214, 35. [
DOI:10.1016/S0262-4079(12)61171-3]
48. Stepensky, D. Pharmacokinetics of Toxin-Derived Peptide Drugs. Toxins 2018, 10. [
DOI:10.3390/toxins10110483] [
PMID] [
]
49. Smith, C.G.; Vane, J.R. The discovery of captopril. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2003, 17, 788-789. [
DOI:10.1096/fj.03-0093life] [
PMID]
50. Koh, C.Y.; Kini, R.M. From snake venom toxins to therapeutics-cardiovascular examples. 2012,59, 497-506. [
DOI:10.1016/j.toxicon.2011.03.017] [
PMID]
51. Lazarovici, P.; et al. From Snake Venom's Disintegrins and C-Type Lectins to Anti-Platelet Drugs. Toxins 2019, 11, 303 [
DOI:10.3390/toxins11050303] [
PMID] [
]
52. Egbertson, M.S.; et al.Non-peptide fibrinogen receptor antagonists. 2. Optimization of a tyrosine template as a mimic for Arg-Gly-Asp.. 1994, 37, 2537-2551. [
DOI:10.1021/jm00042a007] [
PMID]