Volume 9, Issue 1 (2024)                   SJMR 2024, 9(1): 5-11 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nateghi M R, Amini Mahabadi J. The use of snake venom in cancer treatment: a review study. SJMR 2024; 9 (1) : 2
URL: http://saremjrm.com/article-1-250-en.html
1- Sarem Gynecology, Obstetrics and Infertility Research Center, Sarem Women’s Hospital, Iran University of Medical Science (IUMS), Tehran, Iran. & Sarem Cell Research Center (SCRC), Sarem Women’s Hospital, Tehran, Iran.
2- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
Abstract:   (2952 Views)
Introduction: Snake venom is an oily liquid, depending on the type of snake, it is white to bright yellow, transparent or cloudy and slightly acidic. Snake venom is a mixture of complex protein substances with chemical and enzymatic properties and non-protein substances. Snake venom is a folk medicine that has been used since ancient times. Biochemically, snake venom is a complex mixture of medicinally active proteins and polypeptides. Snake venom usually contains 30 to 100 venom proteins, some of these proteins have enzymatic activity, while others are non-enzymatic. There are about 26 types of enzymes in snake venom. About 90 to 92% of the dry weight of poison is composed of protein substances, some of which affect the nervous system. Some of them change the permeability of the cell and others cause the destruction of muscle fibers. The purpose of this article is to review recent findings on the use of snake venom as an anticancer agent
Conclusion: Snake venom has the highest toxicity potential and is an attractive option in the development of anti-cancer agents. Usually, traditionally used anticancer drugs have unwanted side effects. Venomous animals secrete poison from certain parts of their body. Due to the anticancer activities of choice, these naturally derived compounds will be of great importance in the field of cancer. Snake venom is a combination of biologically active components that play a role not only in the pathophysiology of detoxification, but also in the development of new drugs for the treatment of many diseases. Snake venom produces antitumor, antimicrobial, analgesic, antiplatelet, blood pressure lowering, etc. activities. Today, using special isolation and formulation techniques, some purified snake venom components are used for their potential to treat acute and chronic conditions, while others are undergoing further clinical trials. Snake venom can be a valuable source of new key components in drug discovery.
Article number: 2
Full-Text [PDF 937 kb]   (476 Downloads)    
Article Type: Analytical Review | Subject: Health and safety
Received: 2023/05/5 | Accepted: 2023/05/15 | Published: 2024/12/4

References
1. 1- A. Jemal, F. et al, "Global cancer statistics," CA: Cancer Journal for Clinicians,. 2011.69-90,. [DOI:10.3322/caac.20107] [PMID]
2. N. Hidetomo, et al., "Can anesthetic techniques or drugs affect cancer recurrence in patients undergoing cancer surgery?" Journal of Anesthesia,. 2013,731-741. [DOI:10.1007/s00540-013-1615-7] [PMID]
3. Fatemeh Javani Jouni1 , et al. Evaluation of Anti-Cancer Effects of Caspian Cobra (Naja naja oxiana) Snake Venom in Comparison with Doxorubicin in HeLa Cancer Cell Line and Normal HFF Fibroblast. 2022;29(6): 20-27. [DOI:10.52547/sjimu.29.6.20]
4. Afsar B, et al. Renin angiotensin system and cancer: epidemiology cell signaling genetics and epigenetics. Clini Trans Oncol 2021; 82-96.
5. Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health.2019;9:217-22. [DOI:10.2991/jegh.k.191008.001] [PMID] []
6. Miller, K.D.; et al,. Cancer treatment and survivorship statistics, 2016. CA Cancer. J. Clin. 2016, 66, 271-289 [DOI:10.3322/caac.21349] [PMID]
7. M.C.Perry, C. et al,"Chemotherapy," in Clinical Oncology. 2000,379-422.
8. I. Adkins, H. et al, "Bacteria and their toxins tamed is immunotherapy," Current Pharmaceutical Biotechnologyp, vol. 13, pp. 2012,1446-1473 [DOI:10.2174/138920112800784835] [PMID]
9. Leonardo A., et al, Antitumoral Activity of Snake Venom Proteins: New Trends in Cancer Therapy 2014, 19 pages [DOI:10.1155/2014/203639] [PMID] []
10. Chan YS, et al. Snake venom toxins: toxicity and medicinal applications. Appl Microbiol Biotechnol. 2016, 65-81
11. Chippaux J-P, et al. Snake venom variability: methods of study, results and interpretation. 1991 279-303. [DOI:10.1016/0041-0101(91)90116-9] [PMID]
12. SAREH DORTAJ. The Toxic Components and the Clinical Uses of Snake Venom: A Review. 2021; 10(3):107-:112
13. Nolan, C,et al. Ancrod, the coagulating enzyme from Malayan pit viper (Agkistrodon rhodostoma) venom. Methods Enzym. 1976, 45, 205-213. [DOI:10.1016/S0076-6879(76)45020-6] [PMID]
14. Markland, F.S.; Damus, P.S. Purification and properties of a thrombin-like enzyme from the venom of Crotalus adamanteus. 1971, 246, 6460-6473. [DOI:10.1016/S0021-9258(19)34138-9] [PMID]
15. W. D. DeWys, et al "Effect of defibrination on tumor growth and response to chemotherapy," 1976,3584-3587,
16. Tarek Mohamed, et al. Snake Venoms in Drug Discovery: Valuable Therapeutic 2019-2-25-
17. Gopalakrishnakone, P.; Inagaki, H. Snake Venoms; Springer: Berlin, Germany, 2017.
18. Kumar, V.; et al. Anticholinesterase activity of elapid venoms. Toxicon 1973, 11, 131-138. [DOI:10.1016/0041-0101(73)90074-3] [PMID]
19. Ding, B.; et al. Antiplatelet aggregation and antithrombosis efficiency of peptides in the snake venom of deinagkistrodon acutus: Isolation, identification, and evaluation. Evid. Based Complement. 2015, 412841 [DOI:10.1155/2015/412841] [PMID] []
20. Li Li 1, el tal, Snake Venoms in Cancer Therapy: Past, Present and Future. Toxins 2018, 10, 346 [DOI:10.3390/toxins10090346] [PMID] []
21. Rabi u, et al, Major Enzymes from Snke Venoms: Mechanisms of Action and Pharmacological Applications.2019
22. Waheed, H.; et al. Snake Venom: From Deadly Toxins to Life-saving Therapeutics. Curr. Med. Chem. 2017, 24, 1874-1891 [DOI:10.2174/0929867324666170605091546] [PMID]
23. Tarek Mohamed Abd El-Aziz, Snake Venoms in Drug Discovery: Valuable Therapeutic 2019, 11, 564 [DOI:10.3390/toxins11100564] [PMID] []
24. Sanhajariya, S.; Duffull, S.; Isbister, G. Pharmacokinetics of snake venom. Toxins 2018, 10, 73 [DOI:10.3390/toxins10020073] [PMID] []
25. Vyas, vive kumar, et al. Therapeutic potential of snake venom in cancer therapy.2013, 156-162 [DOI:10.1016/S2221-1691(13)60042-8] [PMID]
26. Khusro A, etal. Snake venom as anticancer agent.2013, 24-29
27. Zouari-kessentini, Raoudha, Antitumoral potential of Tunisian snake venoms secreted phospholipases A2.Hindawi publishing corporation,2013,p.9 [DOI:10.1155/2013/391389] [PMID] []
28. Terra, A.L.C; et al. Biological characterization of the Amazon coral Micrurus spixii snake venom: Isolation of a new neurotoxic phospholipase A2. 2015, 103, 1-11. [DOI:10.1016/j.toxicon.2015.06.011] [PMID]
29. Cedro, R.C.A.; et al. Cytotoxic and inflammatory potential of a phospholipase A2 from Bothrops jararaca snake venom.. 2018, 24, 33 [DOI:10.1186/s40409-018-0170-y] [PMID] []
30. More, S.; et al. Purification of an L-amino acid oxidase from Bungarus caeruleus (Indian krait) venom. 2010, 16, 60-76 [DOI:10.1590/S1678-91992010005000002]
31. Bordon, K.C.; et al. Isolation, enzymatic characterization and antiedematogenic activity of the first reported rattlesnake hyaluronidase from Crotalus durissus terrificus venom. Biochimi 2012, 94, 2740-2748 [DOI:10.1016/j.biochi.2012.08.014] [PMID]
32. Bhavya, J.; et al. Low-molecular weighthyaluronidase from the venom of Bungarus caeruleus (Indian common krait) snake: Isolation and partial characterization.. 2016, 39, 203-208. [DOI:10.1080/10826076.2016.1144203]
33. G. Borkow, A. et al, "Binding of cytotoxin P4 from Naja nigricollis nigricollis to B16F10 melanoma and WEHI-3B leukemia cells,". 1992,139-146, [DOI:10.1016/0378-1097(92)90084-2]
34. El-Aziz, T.M.A.; et al. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. 2019, 11, 564. [DOI:10.3390/toxins11100564] [PMID] []
35. Prashanth, J.R.; Hasaballah, N. Pharmacological Screening Technologies for Venom Peptide Discovery. Neuropharmacology. 2017, 127, 4-19. [DOI:10.1016/j.neuropharm.2017.03.038] [PMID]
36. Lucía Ageitos, et al, Biologically Active Peptides from Venoms: Applications in Antibiotic 2022, 23, 15437. [DOI:10.3390/ijms232315437] [PMID] []
37. Gargi Sarode, et al. Venoms and Oral Cancer: 2022,3-13 [DOI:10.5005/jp-journals-10015-2041]
38. Liu DY, Yu CL, Liu QH. Development and the utilization of the biotoxins. Beijing: Chemical Industry Press; 2007.
39. de la Vega RCR, Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon 2005;46(8):831-844. [DOI:10.1016/j.toxicon.2005.09.006] [PMID]
40. Srairi-Abid N, et al. Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways. 2019;80:160-174. [DOI:10.1016/j.ceca.2019.05.003] [PMID]
41. Moga MA, et al. Anticancer activity of toxins from bee and snake venom: an overview on ovarian cancer. Molecules 2018;23(3):692. [DOI:10.3390/molecules23030692] [PMID] []
42. Santos MMDV, et al. Antitumoural effect of an L-amino acid oxidase isolated from Bothropsjararaca snake venom. Basic 2008;102(6):533-542. [DOI:10.1111/j.1742-7843.2008.00229.x] [PMID]
43. Dewys WD, Kwaan HC, Bathina S. Effect of defibrination on tumor growth and response to chemotherapy. Cancer Res 1976;36(10):3584-3587.
44. Chen J, Lariviere WR. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. 2010;92(2):151-183. [DOI:10.1016/j.pneurobio.2010.06.006] [PMID] []
45. Qiao L, Huang YF, Cao JQ, et al. One new bufadienolide from Chinese drug 'Chan'Su'. 2008;10(3-4):233-237. [DOI:10.1080/10286020701603146]
46. Zhang DM, Liu JS, Deng LJ, et al. Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mtor pathway. Carcinogenesis 2013;34(6):1331-1342. [DOI:10.1093/carcin/bgt060] [PMID]
47. Crow, J.M. Venomous drugs: Captopril. New Sci. 2012, 214, 35. [DOI:10.1016/S0262-4079(12)61171-3]
48. Stepensky, D. Pharmacokinetics of Toxin-Derived Peptide Drugs. Toxins 2018, 10. [DOI:10.3390/toxins10110483] [PMID] []
49. Smith, C.G.; Vane, J.R. The discovery of captopril. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2003, 17, 788-789. [DOI:10.1096/fj.03-0093life] [PMID]
50. Koh, C.Y.; Kini, R.M. From snake venom toxins to therapeutics-cardiovascular examples. 2012,59, 497-506. [DOI:10.1016/j.toxicon.2011.03.017] [PMID]
51. Lazarovici, P.; et al. From Snake Venom's Disintegrins and C-Type Lectins to Anti-Platelet Drugs. Toxins 2019, 11, 303 [DOI:10.3390/toxins11050303] [PMID] []
52. Egbertson, M.S.; et al.Non-peptide fibrinogen receptor antagonists. 2. Optimization of a tyrosine template as a mimic for Arg-Gly-Asp.. 1994, 37, 2537-2551. [DOI:10.1021/jm00042a007] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | {Sarem Journal of Medical Research}

Designed & Developed by : Yektaweb