1. Rezaeiye, R.D., et al., Impact of various parameters as predictors of the success rate of in vitro fertilization. International Journal of Fertility & Sterility, 2022. 16(2): p. 76.
2. Smeenk, J., et al., ART in Europe, 2019: results generated from European registries by ESHRE. Human Reproduction, 2023. 38(12): p. 2321-2338. [
DOI:10.1093/humrep/dead197] [
PMID] [
]
3. Datta, A.K., et al., Mild versus conventional ovarian stimulation for IVF in poor, normal and hyper-responders: a systematic review and meta-analysis. Human reproduction update, 2021. 27(2): p. 229-253. [
DOI:10.1093/humupd/dmaa035] [
PMID] [
]
4. Abbara, A., et al., FSH requirements for follicle growth during controlled ovarian stimulation. Frontiers in endocrinology, 2019. 10: p. 579. [
DOI:10.3389/fendo.2019.00579] [
PMID] [
]
5. Shrestha, D., X. La, and H.L. Feng, Comparison of different stimulation protocols used in in vitro fertilization: a review. Annals of translational medicine, 2015. 3(10): p. 137.
6. Hanassab, S., et al., The prospect of artificial intelligence to personalize assisted reproductive technology. Npj digital medicine, 2024. 7(1): p. 55. [
DOI:10.1038/s41746-024-01006-x] [
PMID] [
]
7. Medenica, S., et al., The future is coming: artificial intelligence in the treatment of infertility could improve assisted reproduction outcomes-the value of regulatory frameworks. Diagnostics, 2022. 12(12): p. 2979. [
DOI:10.3390/diagnostics12122979] [
PMID] [
]
8. Mañas, N.C., et al., P-637 Development and validation of an Artificial Intelligence algorithm that matches a clinician ability to select the best follitropin dose for ovarian stimulation. Human Reproduction, 2021. 36(Supplement_1): p. deab130. 636. [
DOI:10.1093/humrep/deab130.636]
9. Choo, C.-W. and J.H. Kim, A prospective cohort study to develop a treatment algorithm for controlled ovarian stimulation to select a starting dose of recombinant follicle stimulating hormone based on patient characteristics and ovarian response (fame study). Fertility and Sterility, 2021. 116(3): p. e196. [
DOI:10.1016/j.fertnstert.2021.07.538]
10. Ferrand, T., et al., Predicting the number of oocytes retrieved from controlled ovarian hyperstimulation with machine learning. Human Reproduction, 2023. 38(10): p. 1918-1926. [
DOI:10.1093/humrep/dead163] [
PMID] [
]
11. Hajirasouliha, I. and O. Elemento, Precision medicine and artificial intelligence: overview and relevance to reproductive medicine. Fertility and Sterility, 2020. 114(5): p. 908-913. [
DOI:10.1016/j.fertnstert.2020.09.156] [
PMID]
12. Niederberger, C., et al., Forty years of IVF. Fertility and sterility, 2018. 110(2): p. 185-324. e5. [
DOI:10.1016/j.fertnstert.2018.05.017] [
PMID]
13. Davenport, T. and R. Kalakota, The potential for artificial intelligence in healthcare. Future healthcare journal, 2019. 6(2): p. 94-98. [
DOI:10.7861/futurehosp.6-2-94] [
PMID] [
]
14. Albertini, D.F., The making and managing of a niche for artificial intelligence in reproductive medicine. Journal of Assisted Reproduction and Genetics, 2023. 40(2): p. 211-212. [
DOI:10.1007/s10815-023-02744-9] [
PMID] [
]
15. Hariton, E., et al., Applications of artificial intelligence in ovarian stimulation: a tool for improving efficiency and outcomes. Fertility and sterility, 2023. 120(1): p. 8-16. [
DOI:10.1016/j.fertnstert.2023.05.148] [
PMID]
16. Letterie, G. and A. Mac Donald, Artificial intelligence in in vitro fertilization: a computer decision support system for day-to-day management of ovarian stimulation during in vitro fertilization. Fertility and Sterility, 2020. 114(5): p. 1026-1031. [
DOI:10.1016/j.fertnstert.2020.06.006] [
PMID]
17. Letterie, G., Three ways of knowing: the integration of clinical expertise, evidence-based medicine, and artificial intelligence in assisted reproductive technologies. Journal of Assisted Reproduction and Genetics, 2021. 38(7): p. 1617-1625. [
DOI:10.1007/s10815-021-02159-4] [
PMID] [
]
18. Xia, L., et al., Predicting personalized cumulative live birth rate after a complete in vitro fertilization cycle: an analysis of 32,306 treatment cycles in China. Reproductive Biology and Endocrinology, 2024. 22(1): p. 65. [
DOI:10.1186/s12958-024-01237-3] [
PMID] [
]
19. Wald, K., et al., Changing stimulation protocol on repeat conventional ovarian stimulation cycles does not lead to improved laboratory outcomes. Fertility and Sterility, 2021. 116(3): p. 757-765. [
DOI:10.1016/j.fertnstert.2021.04.030] [
PMID]
20. Li, Y., et al., A novel nomogram for individualized gonadotropin starting dose in GnRH antagonist protocol. Frontiers in Endocrinology, 2021. 12: p. 688654. [
DOI:10.3389/fendo.2021.688654] [
PMID] [
]
21. Murillo, F., et al., Causal inference indicates that poor responders have similar outcomes with the antagonist protocol compared with flare. Fertility and sterility, 2023. 120(2): p. 289-296. [
DOI:10.1016/j.fertnstert.2023.04.007] [
PMID]
22. Broekmans, F.J., Individualization of FSH doses in assisted reproduction: facts and fiction. Frontiers in endocrinology, 2019. 10: p. 181. [
DOI:10.3389/fendo.2019.00181] [
PMID] [
]
23. Xu, H., et al., POvaStim: An online tool for directing individualized FSH doses in ovarian stimulation. The Innovation, 2023. 4(2). [
DOI:10.1016/j.xinn.2023.100401] [
PMID] [
]
24. Letterie, G., A. MacDonald, and Z. Shi, An artificial intelligence platform to optimize workflow during ovarian stimulation and IVF: process improvement and outcome-based predictions. Reproductive biomedicine online, 2022. 44(2): p. 254-260. [
DOI:10.1016/j.rbmo.2021.10.006] [
PMID]
25. Cheng, S., et al., Comparative outcomes of AI-assisted ChatGPT and face-to-face consultations in infertility patients: a cross-sectional study. Postgraduate Medical Journal, 2024. 100(1189): p. 851-855. [
DOI:10.1093/postmj/qgae083] [
PMID]
26. Liang, X., et al., Evaluation of oocyte maturity using artificial intelligence quantification of follicle volume biomarker by three-dimensional ultrasound. Reproductive biomedicine online, 2022. 45(6): p. 1197-1206. [
DOI:10.1016/j.rbmo.2022.07.012] [
PMID]
27. Chung, E.H., et al., Virtual compared with in-clinic transvaginal ultrasonography for ovarian reserve assessment. Obstetrics & Gynecology, 2022. 139(4): p. 561-570. [
DOI:10.1097/AOG.0000000000004698] [
PMID] [
]
28. Abbara, A., S.A. Clarke, and W.S. Dhillo, Novel concepts for inducing final oocyte maturation in in vitro fertilization treatment. Endocrine reviews, 2018. 39(5): p. 593-628. [
DOI:10.1210/er.2017-00236] [
PMID] [
]
29. Hariton, E., et al., A machine learning algorithm can optimize the day of trigger to improve in vitro fertilization outcomes. Fertility and Sterility, 2021. 116(5): p. 1227-1235. [
DOI:10.1016/j.fertnstert.2021.06.018] [
PMID]
30. Fanton, M., et al., An interpretable machine learning model for predicting the optimal day of trigger during ovarian stimulation. Fertility and Sterility, 2022. 118(1): p. 101-108. [
DOI:10.1016/j.fertnstert.2022.04.003] [
PMID]
31. Dhillon, R., et al., Predicting the chance of live birth for women undergoing IVF: a novel pretreatment counselling tool. Human Reproduction, 2016. 31(1): p. 84-92. [
DOI:10.1093/humrep/dev268] [
PMID]
32. Cai, Q., et al., Quality of embryos transferred and progesterone levels are the most important predictors of live birth after fresh embryo transfer: a retrospective cohort study. Journal of Assisted Reproduction and Genetics, 2014. 31: p. 185-194. [
DOI:10.1007/s10815-013-0129-4] [
PMID] [
]
33. Bulletti, C., et al., Artificial Intelligence, Clinical Decision Support Algorithms, Mathematical Models, Calculators Applications in Infertility: Systematic Review and Hands-On Digital Applications. Mayo Clinic Proceedings: Digital Health, 2024. [
DOI:10.1016/j.mcpdig.2024.08.007] [
PMID] [
]
34. Mendizabal-Ruiz, G., et al., Artificial intelligence in human reproduction. Archives of Medical Research, 2024. 55(8): p. 103131. [
DOI:10.1016/j.arcmed.2024.103131] [
PMID]
35. Sellami, A., et al., # 364: Precision Medicine and Artificial Intelligence in the Area of Infertility: Update Applications and Perspectives. Fertility & Reproduction, 2023. 5(04): p. 327-327. [
DOI:10.1142/S2661318223741383]