1. Inhorn, M.C. and P. Patrizio, Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Human reproduction update, 2015. 21(4): p. 411-426. [
DOI:10.1093/humupd/dmv016] [
PMID]
2. Khatun, A., M.S. Rahman, and M.-G. Pang, Clinical assessment of the male fertility. Obstetrics & gynecology science, 2018. 61(2): p. 179-191. [
DOI:10.5468/ogs.2018.61.2.179] [
PMID] [
]
3. Agarwal, A., et al., A unique view on male infertility around the globe. Reproductive biology and endocrinology, 2015. 13(1): p. 1-9. [
DOI:10.1186/s12958-015-0032-1] [
PMID] [
]
4. Fauser, B.C., Towards the global coverage of a unified registry of IVF outcomes. Reproductive biomedicine online, 2019. 38(2): p. 133-137. [
DOI:10.1016/j.rbmo.2018.12.001] [
PMID]
5. Wilkinson, J., et al., Reproductive medicine: still more ART than science? BJOG: An International Journal of Obstetrics and Gynaecology, 2018. 126(2): p. 138-141. [
DOI:10.1111/1471-0528.15409] [
PMID]
6. You, J.B., et al., Machine learning for sperm selection. Nature Reviews Urology, 2021. 18(7): p. 387-403. [
DOI:10.1038/s41585-021-00465-1] [
PMID]
7. Oseguera-López, I., et al., Novel techniques of sperm selection for improving IVF and ICSI outcomes. Frontiers in cell and developmental biology, 2019. 7: p. 298. [
DOI:10.3389/fcell.2019.00298] [
PMID] [
]
8. Swain, J.E. and T.B. Pool, ART failure: oocyte contributions to unsuccessful fertilization. Human reproduction update, 2008. 14(5): p. 431-446. [
DOI:10.1093/humupd/dmn025] [
PMID]
9. Bungum, M. and K. Oleszczuk, Sperm DNA and ART (IUI, IVF, ICSI) Pregnancy. A Clinician's Guide to Sperm DNA and Chromatin Damage, 2018: p. 393-410. [
DOI:10.1007/978-3-319-71815-6_21]
10. Vaughan, D.A. and D. Sakkas, Sperm selection methods in the 21st century. Biology of reproduction, 2019. 101(6): p. 1076-1082. [
DOI:10.1093/biolre/ioz032] [
PMID]
11. Asali, A., et al., The possibility of integrating motile sperm organelle morphology examination (MSOME) with intracytoplasmic morphologically-selected sperm injection (IMSI) when treating couples with unexplained infertility. Plos one, 2020. 15(5): p. e0232156. [
DOI:10.1371/journal.pone.0232156] [
PMID] [
]
12. Anbari, F., et al., Microfluidic sperm selection yields higher sperm quality compared to conventional method in ICSI program: A pilot study. Systems Biology in Reproductive Medicine, 2021. 67(2): p. 137-143. [
DOI:10.1080/19396368.2020.1837994] [
PMID]
13. Bartoov, B., et al., Real‐time fine morphology of motile human sperm cells is associated with IVF‐ICSI outcome. Journal of andrology, 2002. 23(1): p. 1-8. [
DOI:10.1002/j.1939-4640.2002.tb02595.x] [
PMID]
14. Baldini, D., et al., Sperm Selection for ICSI: Do We Have a Winner? Cells, 2021. 10(12): p. 3566. [
DOI:10.3390/cells10123566] [
PMID] [
]
15. Sunkara, S.K., et al., Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Human reproduction, 2011. 26(7): p. 1768-1774. [
DOI:10.1093/humrep/der106] [
PMID]
16. Li, H.W.R., et al., Role of baseline antral follicle count and anti-Mullerian hormone in prediction of cumulative live birth in the first in vitro fertilisation cycle: a retrospective cohort analysis. PloS one, 2013. 8(4): p. e61095. [
DOI:10.1371/journal.pone.0061095] [
PMID] [
]
17. Fatemi, H.M., et al., High ovarian response does not jeopardize ongoing pregnancy rates and increases cumulative pregnancy rates in a GnRH-antagonist protocol. Human Reproduction, 2013. 28(2): p. 442-452. [
DOI:10.1093/humrep/des389] [
PMID]
18. Broekmans, F., et al., A systematic review of tests predicting ovarian reserve and IVF outcome. Human reproduction update, 2006. 12(6): p. 685-718. [
DOI:10.1093/humupd/dml034] [
PMID]
19. Revelli, A., et al., The ovarian sensitivity index (OSI) significantly correlates with ovarian reserve biomarkers, is more predictive of clinical pregnancy than the total number of oocytes, and is consistent in consecutive IVF cycles. Journal of clinical medicine, 2020. 9(6): p. 1914. [
DOI:10.3390/jcm9061914] [
PMID] [
]
20. Fauser, B., K. Diedrich, and P. Devroey, Predictors of ovarian response: progress towards individualized treatment in ovulation induction and ovarian stimulation. Human reproduction update, 2008. 14(1): p. 1-14.
https://doi.org/10.1093/humupd/8.1.1
https://doi.org/10.1093/humupd/dmh009
https://doi.org/10.1093/humupd/dml059
https://doi.org/10.1093/humupd/dmm034 [
DOI:10.1093/humupd/7.1.1] [
PMID]
21. Liu, L., et al., Machine learning-based modeling of ovarian response and the quantitative evaluation of comprehensive impact features. Diagnostics, 2022. 12(2): p. 492. [
DOI:10.3390/diagnostics12020492] [
PMID] [
]
22. Letterie, G.S. and A. MacDonald, A computerized decision-support system for day to day management of ovarian stimulation cycles during in vitro fertilization. Fertility and Sterility, 2019. 112(3): p. e28. [
DOI:10.1016/j.fertnstert.2019.07.206]
23. Fanton, M., et al., An interpretable machine learning model for predicting the optimal day of trigger during ovarian stimulation. Fertility and Sterility, 2022. 118(1): p. 101-108. [
DOI:10.1016/j.fertnstert.2022.04.003] [
PMID]
24. Letterie, G. and A. Mac Donald, Artificial intelligence in in vitro fertilization: a computer decision support system for day-to-day management of ovarian stimulation during in vitro fertilization. Fertility and Sterility, 2020. 114(5): p. 1026-1031. [
DOI:10.1016/j.fertnstert.2020.06.006] [
PMID]
25. Haines, N., et al., Using computer-vision and machine learning to automate facial coding of positive and negative affect intensity. PLoS One, 2019. 14(2): p. e0211735. [
DOI:10.1371/journal.pone.0211735] [
PMID] [
]
26. Diehl, P.U. and M. Cook, Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Frontiers in computational neuroscience, 2015. 9: p. 99. [
DOI:10.3389/fncom.2015.00099] [
PMID] [
]
27. Beam, A.L. and I.S. Kohane, Big data and machine learning in health care. Jama, 2018. 319(13): p. 1317-1318. [
DOI:10.1001/jama.2017.18391] [
PMID]
28. Goldenberg, S.L., G. Nir, and S.E. Salcudean, A new era: artificial intelligence and machine learning in prostate cancer. Nature Reviews Urology, 2019. 16(7): p. 391-403. [
DOI:10.1038/s41585-019-0193-3] [
PMID]
29. Im, H., et al., Design and clinical validation of a point-of-care device for the diagnosis of lymphoma via contrast-enhanced microholography and machine learning. Nature biomedical engineering, 2018. 2(9): p. 666-674. [
DOI:10.1038/s41551-018-0265-3] [
PMID] [
]
30. Lo, Y.-C., et al., Machine learning in chemoinformatics and drug discovery. Drug discovery today, 2018. 23(8): p. 1538-1546. [
DOI:10.1016/j.drudis.2018.05.010] [
PMID] [
]
31. Vamathevan, J., et al., Applications of machine learning in drug discovery and development. Nature reviews Drug discovery, 2019. 18(6): p. 463-477. [
DOI:10.1038/s41573-019-0024-5] [
PMID] [
]
32. Liu, Y. and M. Zhang, Neural network methods for natural language processing. 2018, MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info ….
33. Wang, R., et al., Artificial intelligence in reproductive medicine. Reproduction (Cambridge, England), 2019. 158(4): p. R139. [
DOI:10.1530/REP-18-0523] [
PMID] [
]
34. Chu, K.Y., et al., Artificial intelligence in reproductive urology. Current urology reports, 2019. 20: p. 1-6. [
DOI:10.1007/s11934-019-0914-4] [
PMID]
35. Zegers-Hochschild, F., et al., The international committee for monitoring assisted reproductive technology (ICMART) and the world health organization (WHO) revised glossary on ART terminology, 2009. Human reproduction, 2009. 24(11): p. 2683-2687. [
DOI:10.1093/humrep/dep343] [
PMID]
36. Sengul, Y., A. Bener, and A. Uyar, Emerging technologies for improving embryo selection: a systematic review. Advanced Health Care Technologies, 2015: p. 55-64. [
DOI:10.2147/AHCT.S71272]
37. Lafuente, R., et al., Outdoor air pollution and sperm quality. Fertility and sterility, 2016. 106(4): p. 880-896. [
DOI:10.1016/j.fertnstert.2016.08.022] [
PMID]
38. Jensen, T.K., et al., High dietary intake of saturated fat is associated with reduced semen quality among 701 young Danish men from the general population. The American journal of clinical nutrition, 2013. 97(2): p. 411-418. [
DOI:10.3945/ajcn.112.042432] [
PMID]
39. Afeiche, M., et al., Dairy food intake in relation to semen quality and reproductive hormone levels among physically active young men. Human reproduction, 2013. 28(8): p. 2265-2275. [
DOI:10.1093/humrep/det133] [
PMID] [
]
40. Du Plessis, S.S., et al., The effect of obesity on sperm disorders and male infertility. Nature Reviews Urology, 2010. 7(3): p. 153-161. [
DOI:10.1038/nrurol.2010.6] [
PMID]
41. Sear, R., et al., Understanding variation in human fertility: what can we learn from evolutionary demography? Philosophical Transactions of the Royal Society B: Biological Sciences, 2016. 371(1692): p. 20150144. [
DOI:10.1098/rstb.2015.0144] [
PMID] [
]
42. Ozturk, S., Selection of competent oocytes by morphological criteria for assisted reproductive technologies. Molecular Reproduction and Development, 2020. 87(10): p. 1021-1036. [
DOI:10.1002/mrd.23420] [
PMID]
43. Lemseffer, Y., et al., Methods for Assessing Oocyte Quality: A Review of Literature. Biomedicines, 2022. 10(9): p. 2184. [
DOI:10.3390/biomedicines10092184] [
PMID] [
]
44. Uyar, A., et al. ROC based evaluation and comparison of classifiers for IVF implantation prediction. in International Conference on Electronic Healthcare. 2009. Springer. [
DOI:10.1007/978-3-642-11745-9_17]
45. Chen, C.-C., et al. Knowledge discovery on in vitro fertilization clinical data using particle swarm optimization. in 2009 Ninth IEEE International Conference on Bioinformatics and BioEngineering. 2009. IEEE. [
DOI:10.1109/BIBE.2009.36]
46. Van Montfoort, A.P., et al., Reduced oxygen concentration during human IVF culture improves embryo utilization and cumulative pregnancy rates per cycle. Human reproduction open, 2020. 2020(1): p. hoz036. [
DOI:10.1093/hropen/hoz036] [
PMID] [
]
47. Lehner, A., et al., Embryo density may affect embryo quality during in vitro culture in a microwell group culture dish. Archives of Gynecology and Obstetrics, 2017. 296: p. 345-353. [
DOI:10.1007/s00404-017-4403-z] [
PMID]
48. Hook, K.A., et al., The social shape of sperm: using an integrative machine-learning approach to examine sperm ultrastructure and collective motility. Proceedings of the Royal Society B, 2021. 288(1959): p. 20211553. [
DOI:10.1098/rspb.2021.1553] [
PMID] [
]
49. Roldan, E.R., Sperm competition and the evolution of sperm form and function in mammals. Reproduction in Domestic Animals, 2019. 54: p. 14-21. [
DOI:10.1111/rda.13552] [
PMID]
50. Matter, F., A Clinician's Guide to Sperm DNA and Chromatin Damage. 2018, Springer International Publishing. p. 393-410.
51. Rappa, K.L., et al., Sperm processing for advanced reproductive technologies: Where are we today? Biotechnology advances, 2016. 34(5): p. 578-587. [
DOI:10.1016/j.biotechadv.2016.01.007] [
PMID]
52. Younglai, E., et al., Sperm swim-up techniques and DNA fragmentation. Human reproduction, 2001. 16(9): p. 1950-1953. [
DOI:10.1093/humrep/16.9.1950] [
PMID]
53. Yamanaka, M., et al., Combination of density gradient centrifugation and swim-up methods effectively decreases morphologically abnormal sperms. Journal of Reproduction and Development, 2016. 62(6): p. 599-606. [
DOI:10.1262/jrd.2016-112] [
PMID] [
]
54. Repping, S., et al., Use of the total motile sperm count to predict total fertilization failure in in vitro fertilization. Fertility and sterility, 2002. 78(1): p. 22-28. [
DOI:10.1016/S0015-0282(02)03178-3] [
PMID]
55. Ribeiro, S., et al., Inter‐and intra‐laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation. Andrology, 2017. 5(3): p. 477-485. [
DOI:10.1111/andr.12334] [
PMID]
56. Daloglu, M.U. and A. Ozcan, Computational imaging of sperm locomotion. Biology of reproduction, 2017. 97(2): p. 182-188. [
DOI:10.1093/biolre/iox086] [
PMID] [
]
57. Engel, K.M., et al., Automated semen analysis by SQA Vision® versus the manual approach-A prospective double‐blind study. Andrologia, 2019. 51(1): p. e13149. [
DOI:10.1111/and.13149] [
PMID]
58. Mendizabal-Ruiz, G., et al., Computer software (SiD) assisted real-time single sperm selection associated with fertilization and blastocyst formation. Reproductive BioMedicine Online, 2022. 45(4): p. 703-711. [
DOI:10.1016/j.rbmo.2022.03.036] [
PMID]
59. Viswanath, P., et al. Grading of mammalian cumulus oocyte complexes using machine learning for in vitro embryo culture. in 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). 2016. IEEE. [
DOI:10.1109/BHI.2016.7455862]
60. Garg, S., et al., Cardiomyocytes rhythmically beating generated from goat embryonic stem cell. Theriogenology, 2012. 77(5): p. 829-839. [
DOI:10.1016/j.theriogenology.2011.05.029] [
PMID]
61. Hendriksen, P., et al., Bovine follicular development and its effect on the in vitro competence of oocytes. Theriogenology, 2000. 53(1): p. 11-20. [
DOI:10.1016/S0093-691X(99)00236-8] [
PMID]
62. Hyttel, P., et al., Oocyte growth, capacitation and final maturation in cattle. Theriogenology, 1997. 47(1): p. 23-32. [
DOI:10.1016/S0093-691X(96)00336-6]
63. Coticchio, G., et al., What criteria for the definition of oocyte quality? Annals of the New York Academy of Sciences, 2004. 1034(1): p. 132-144. [
DOI:10.1196/annals.1335.016] [
PMID]
64. Hatırnaz, Ş., et al., Oocyte in vitro maturation: A sytematic review. Turkish journal of obstetrics and gynecology, 2018. 15(2): p. 112-125. [
DOI:10.4274/tjod.23911] [
PMID] [
]
65. Segovia, Y., et al., Ultrastructural characteristics of human oocytes vitrified before and after in vitro maturation. Journal of Reproduction and Development, 2017. 63(4): p. 377-382. [
DOI:10.1262/jrd.2017-009] [
PMID] [
]
66. La, X., J. Zhao, and Z. Wang, Clinical application of in vitro maturation of oocytes. Embryology-Theory and Practice, 2019. [
DOI:10.5772/intechopen.87773]
67. Monti, M., et al., Functional topography of the fully grown human oocyte. European Journal of Histochemistry: EJH, 2017. 61(1). [
DOI:10.4081/ejh.2017.2769]
68. Fair, T., P. Hyttel, and T. Greve, Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Molecular reproduction and development, 1995. 42(4): p. 437-442. [
DOI:10.1002/mrd.1080420410] [
PMID]
69. Bartolacci, A., et al., Does morphological assessment predict oocyte developmental competence? A systematic review and proposed score. Journal of assisted reproduction and genetics, 2022: p. 1-15. [
DOI:10.1007/s10815-021-02370-3] [
PMID] [
]
70. Zieliński, K., et al., Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data. PLOS Computational Biology, 2023. 19(4): p. e1011020. [
DOI:10.1371/journal.pcbi.1011020] [
PMID] [
]
71. Hesters, L., et al., Impact of early cleaved zygote morphology on embryo development and in vitro fertilization-embryo transfer outcome: a prospective study. Fertility and sterility, 2008. 89(6): p. 1677-1684. [
DOI:10.1016/j.fertnstert.2007.04.047] [
PMID]
72. Cruz, M., et al., Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. Journal of assisted reproduction and genetics, 2011. 28: p. 569-573. [
DOI:10.1007/s10815-011-9549-1] [
PMID] [
]
73. Manna, C., et al., Artificial intelligence techniques for embryo and oocyte classification. Reproductive biomedicine online, 2013. 26(1): p. 42-49. [
DOI:10.1016/j.rbmo.2012.09.015] [
PMID]
74. Chavez-Badiola, A., et al., Embryo Ranking Intelligent Classification Algorithm (ERICA): artificial intelligence clinical assistant predicting embryo ploidy and implantation. Reproductive BioMedicine Online, 2020. 41(4): p. 585-593. [
DOI:10.1016/j.rbmo.2020.07.003] [
PMID]
75. Ranjini, K., A. Suruliandi, and S. Raja, Machine learning techniques for assisted reproductive technology: A review. Journal of Circuits, Systems and Computers, 2020. 29(11): p. 2030010. [
DOI:10.1142/S021812662030010X]
76. Hamamoto, R., et al., Epigenetics analysis and integrated analysis of multiomics data, including epigenetic data, using artificial intelligence in the era of precision medicine. Biomolecules, 2019. 10(1): p. 62. [
DOI:10.3390/biom10010062] [
PMID] [
]
77. Hamamoto, R., Application of artificial intelligence for medical research. 2021, MDPI. p. 90. [
DOI:10.3390/biom11010090] [
PMID] [
]
78. Merican, Z.Z., U.K. Yusof, and N.L. Abdullah, Review on Embryo Selection Based on Morphology Using Machine Learning Methods. International Journal of Advances in Soft Computing & Its Applications, 2021. 13(2): p. 44-59.
79. Sarker, I.H., Machine learning: Algorithms, real-world applications and research directions. SN computer science, 2021. 2(3): p. 160. [
DOI:10.1007/s42979-021-00592-x] [
PMID] [
]
80. Salman, M., et al., Artificial intelligence in bio-medical domain. International Journal of Advanced Computer Science and Applications, 2017. 8(8): p. 319-327. [
DOI:10.14569/IJACSA.2017.080842]
81. DeRoos, D., Hadoop for dummies. 2014: John Wiley & Sons.
82. Asada, K., et al., Uncovering prognosis-related genes and pathways by multi-omics analysis in lung cancer. Biomolecules, 2020. 10(4): p. 524. [
DOI:10.3390/biom10040524] [
PMID] [
]
83. Dozen, A., et al., Image segmentation of the ventricular septum in fetal cardiac ultrasound videos based on deep learning using time-series information. Biomolecules, 2020. 10(11): p. 1526. [
DOI:10.3390/biom10111526] [
PMID] [
]
84. Kobayashi, K., et al., Fully-connected neural networks with reduced parameterization for predicting histological types of lung cancer from somatic mutations. Biomolecules, 2020. 10(9): p. 1249. [
DOI:10.3390/biom10091249] [
PMID] [
]
85. Komatsu, M., et al., Detection of cardiac structural abnormalities in fetal ultrasound videos using deep learning. Applied Sciences, 2021. 11(1): p. 371. [
DOI:10.3390/app11010371]
86. Jinnai, S., et al., The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules, 2020. 10(8): p. 1123. [
DOI:10.3390/biom10081123] [
PMID] [
]
87. Hamamoto, R., et al., Application of artificial intelligence technology in oncology: Towards the establishment of precision medicine. Cancers, 2020. 12(12): p. 3532. [
DOI:10.3390/cancers12123532] [
PMID] [
]
88. Komatsu, M., et al., Towards clinical application of artificial intelligence in ultrasound imaging. Biomedicines, 2021. 9(7): p. 720. [
DOI:10.3390/biomedicines9070720] [
PMID] [
]
89. Yamada, M., et al., Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Scientific reports, 2019. 9(1): p. 14465. [
DOI:10.1038/s41598-019-50567-5] [
PMID] [
]
90. Asada, K., et al., Single-cell analysis using machine learning techniques and its application to medical research. Biomedicines, 2021. 9(11): p. 1513. [
DOI:10.3390/biomedicines9111513] [
PMID] [
]
91. Letort, G., et al., An interpretable and versatile machine learning approach for oocyte phenotyping. Journal of Cell Science, 2022. 135(13): p. jcs260281. [
DOI:10.1101/2022.02.01.478709]
92. Diaz, F.J., K. Wigglesworth, and J.J. Eppig, Oocytes determine cumulus cell lineage in mouse ovarian follicles. Journal of cell science, 2007. 120(8): p. 1330-1340. [
DOI:10.1242/jcs.000968] [
PMID]
93. Robert, C., Nurturing the egg: The essential connection between cumulus cells and the oocyte. Reproduction, Fertility and Development, 2021. 34(2): p. 149-159. [
DOI:10.1071/RD21282] [
PMID]
94. Eisenbach, M., Mammalian sperm chemotaxis and its association with capacitation. Developmental genetics, 1999. 25(2): p. 87-94.
https://doi.org/10.1002/(SICI)1520-6408(1999)25:2<87::AID-DVG2>3.0.CO;2-4 [
DOI:10.1002/(SICI)1520-6408(1999)25:23.0.CO;2-4]
95. Kidder, G.M. and A.A. Mhawi, Gap junctions and ovarian folliculogenesis. REPRODUCTION-CAMBRIDGE-, 2002. 123(5): p. 613-620. [
DOI:10.1530/rep.0.1230613] [
PMID]
96. Dutta, R., et al., Non-invasive assessment of porcine oocyte quality by supravital staining of cumulus-oocyte complexes with lissamine green B. Zygote, 2016. 24(3): p. 418-427. [
DOI:10.1017/S0967199415000349] [
PMID]
97. Nevoral, J., et al., Cumulus cell expansion, its role in oocyte biology and perspectives of measurement: A review. Sci Agric Bohem, 2015. 45: p. 212-225. [
DOI:10.1515/sab-2015-0002]
98. Pan, Y., et al., Estrogen improves the development of yak (Bos grunniens) oocytes by targeting cumulus expansion and levels of oocyte-secreted factors during in vitro maturation. Plos one, 2020. 15(9): p. e0239151. [
DOI:10.1371/journal.pone.0239151] [
PMID] [
]
99. Azari-Dolatabad, N., et al., Follicular fluid during individual oocyte maturation enhances cumulus expansion and improves embryo development and quality in a dose-specific manner. Theriogenology, 2021. 166: p. 38-45. [
DOI:10.1016/j.theriogenology.2021.02.016] [
PMID]
100. Raimundo, J. and P. Cabrita, Artificial intelligence at assisted reproductive technology. Procedia Computer Science, 2021. 181: p. 442-447. [
DOI:10.1016/j.procs.2021.01.189]
101. Huang, B., et al., Using deep learning to predict the outcome of live birth from more than 10,000 embryo data. BMC Pregnancy and Childbirth, 2022. 22(1): p. 36. [
DOI:10.1186/s12884-021-04373-5] [
PMID] [
]
102. Mohr-Sasson, A., et al., The association between follicle size and oocyte development as a function of final follicular maturation triggering. Reproductive biomedicine online, 2020. 40(6): p. 887-893. [
DOI:10.1016/j.rbmo.2020.02.005] [
PMID]
103. Permadi, W., et al., Correlation of anti-mullerian hormone level and antral follicle count with oocyte number in a fixed-dose controlled ovarian hyperstimulation of patients of in vitro fertilization program. International Journal of Fertility & Sterility, 2021. 15(1): p. 40.
104. Liang, X., et al., Evaluation of oocyte maturity using artificial intelligence quantification of follicle volume biomarker by three-dimensional ultrasound. Reproductive BioMedicine Online, 2022. 45(6): p. 1197-1206. [
DOI:10.1016/j.rbmo.2022.07.012] [
PMID]
105. Zaninovic, N. and Z. Rosenwaks, Artificial intelligence in human in vitro fertilization and embryology. Fertility and Sterility, 2020. 114(5): p. 914-920. [
DOI:10.1016/j.fertnstert.2020.09.157] [
PMID]
106. Liu, C., D. Jiao, and Z. Liu, Artificial intelligence (AI)-aided disease prediction. Bio Integration, 2020. 1(3): p. 130-136. [
DOI:10.15212/bioi-2020-0017]
107. Li, H., et al., Cr-unet: A composite network for ovary and follicle segmentation in ultrasound images. IEEE journal of biomedical and health informatics, 2019. 24(4): p. 974-983. [
DOI:10.1109/JBHI.2019.2946092] [
PMID]
108. Chakrabarti, S., et al., Data mining curriculum: A proposal (version 1.0). Intensive working group of ACM SIGKDD curriculum committee, 2006. 140: p. 1-10.
109. Uyar, A., et al. 3P: Personalized pregnancy prediction in IVF treatment process. in Electronic Healthcare: First International Conference, eHealth 2008, London, UK, September 8-9, 2008. Revised Selected Papers 1. 2009. Springer.
110. Wang, R., et al., Artificial intelligence in reproductive medicine. Reproduction, 2019. 158(4): p. R139-R154. [
DOI:10.1530/REP-18-0523] [
PMID] [
]
111. Khosravi, P., et al., Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ digital medicine, 2019. 2(1): p. 21. [
DOI:10.1038/s41746-019-0096-y] [
PMID] [
]
112. Wang, R., et al., Artificial intelligence in reproductive medicine. Reproduction, 2019. 158(4): p. 139-154. [
DOI:10.1530/REP-18-0523] [
PMID] [
]
113. Cavalera, F., et al., Chromatin organization and timing of polar body I extrusion identify developmentally competent mouse oocytes. International Journal of Developmental Biology, 2019. 63(3-4-5): p. 245-251. [
DOI:10.1387/ijdb.180362sg] [
PMID]
114. Fernandez, E.I., et al., Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data. Journal of Assisted Reproduction and Genetics, 2020. 37: p. 2359-2376. [
DOI:10.1007/s10815-020-01881-9] [
PMID] [
]
115. Goodson, S.G., et al., CASAnova: a multiclass support vector machine model for the classification of human sperm motility patterns. Biology of reproduction, 2017. 97(5): p. 698-708. [
DOI:10.1093/biolre/iox120] [
PMID] [
]