Volume 8, Issue 4 (2023)                   SJMR 2023, 8(4): 227-242 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jazayeri R. Comparison of the effects of CYP450 polymorphisms on the metabolism of efavirenz; a network meta-analysis study. SJMR 2023; 8 (4) : 2
URL: http://saremjrm.com/article-1-314-en.html
Non-communiable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran. & Department of Genetics, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
Abstract:   (1499 Views)
Pharmacogenetics plays a crucial role in personalized treatment. This field investigates how genetic variations influence drug responses, focusing on how genes affect the body's reaction to medications. This study explores the impact of genetic polymorphisms on the metabolism of efavirenz, a drug used in the treatment of HIV. The objective is to compare the effects of CYP450 polymorphisms on the metabolism of efavirenz using a network meta-analysis approach. This research, conducted following PRISMA guidelines, examines the pharmacogenetic effects on the efficacy and prevention of adverse drug reactions (ADRs) of efavirenz. The search strategy included a review of observational and interventional studies without language or publication date restrictions. Inclusion criteria involved studies assessing drug concentration, AUC, ADRs, and genotype comparisons. Two independent researchers selected studies and managed data. Data analysis was performed using STATA software, employing a combination of methods to assess heterogeneity and the overall impact of genetic polymorphisms. For continuous and binary outcomes, SMDs and ORs or HRs were used, respectively. Egger’s test was conducted to identify publication bias. In this systematic review and meta-analysis, a comprehensive assessment of the relationship between genetic variants and efavirenz metabolism was conducted. Out of 19,861 records, 96 studies were reviewed. These studies, from various countries, had sample sizes ranging from 20 to 6,045 participants. The results indicated that specific variants in genes such as CYP2B6 were significantly associated with changes in plasma efavirenz concentrations. These findings underscore the importance of genetic influences on drug metabolism in the treatment of HIV and the management of its side effects. This extensive systematic review and network meta-analysis evaluated the role of various genes in the metabolism of efavirenz and rivaroxaban. The analyses revealed that specific polymorphisms in the CYP2B6 gene significantly affect the plasma concentration of efavirenz, which is crucial for improving HIV treatment and reducing drug-related side effects. These findings highlight the significance of pharmacogenomic research and the consideration of genetic diversity in therapeutic management.
Article number: 2
Full-Text [PDF 1554 kb]   (692 Downloads)    
Article Type: Systematical Review | Subject: Sterility Genetical Disorders
Received: 2023/12/23 | Accepted: 2024/01/20 | Published: 2024/08/31

References
1. Kreitchmann R, Schalkwijk S, Best B, Wang J, Colbers A, Stek A, et al. Efavirenz pharmacokinetics during pregnancy and infant washout. Antivir Ther. 2019;24(2):95-103. [DOI:10.3851/IMP3283] [PMID] []
2. Lartey M, Kenu E, Lassey A, Ntumy M, Ganu V, Sam M, et al. Pharmacokinetics of Efavirenz 600 mg Once Daily During Pregnancy and Post Partum in Ghanaian Women Living With HIV. Clin Ther. 2020;42(9):1818-25. [DOI:10.1016/j.clinthera.2020.07.008] [PMID] []
3. Maggiolo F. Efavirenz. Expert Opin Pharmacother. 2007;8(8):1137-45. [DOI:10.1517/14656566.8.8.1137] [PMID]
4. Adkins JC, Noble S. Efavirenz. Drugs. 1998;56(6):1055-64; discussion 65-6. [DOI:10.2165/00003495-199856060-00014] [PMID]
5. Ambhore JP, Chaudhari SR, Cheke RS, Kharkar PS. A Concise Analytical Profile of Efavirenz: Analytical Methodologies. Crit Rev Anal Chem. 2022;52(7):1583-92. [DOI:10.1080/10408347.2021.1895711] [PMID]
6. Best BM, Goicoechea M. Efavirenz--still first-line king? Expert Opin Drug Metab Toxicol. 2008;4(7):965-72. [DOI:10.1517/17425255.4.7.965] [PMID] []
7. Chen R, Chen J, Xun J, Hu Z, Huang Q, Zhang R, et al. Pharmacogenomics and pharmacokinetics of efavirenz 400 or 600 mg in 184 treatment-naive HIV-infected patients in China. Pharmacogenomics. 2020;21(13):945-56. [DOI:10.2217/pgs-2019-0169] [PMID]
8. Decloedt EH, Sinxadi PZ, van Zyl GU, Wiesner L, Khoo S, Joska JA, et al. Pharmacogenetics and pharmacokinetics of CNS penetration of efavirenz and its metabolites. J Antimicrob Chemother. 2019;74(3):699-709. [DOI:10.1093/jac/dky481] [PMID] []
9. Dooley KE, Denti P, Martinson N, Cohn S, Mashabela F, Hoffmann J, et al. Pharmacokinetics of efavirenz and treatment of HIV-1 among pregnant women with and without tuberculosis coinfection. J Infect Dis. 2015;211(2):197-205. [DOI:10.1093/infdis/jiu429] [PMID] []
10. Costa B, Vale N. Efavirenz: History, Development and Future. Biomolecules. 2022;13(1). [DOI:10.3390/biom13010088] [PMID] []
11. Fortin C, Joly V. Efavirenz for HIV-1 infection in adults: an overview. Expert Rev Anti Infect Ther. 2004;2(5):671-84. [DOI:10.1586/14789072.2.5.671] [PMID]
12. Kryst J, Kawalec P, Pilc A. Efavirenz-Based Regimens in Antiretroviral-Naive HIV-Infected Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS One. 2015;10(5):e0124279. [DOI:10.1371/journal.pone.0124279] [PMID] []
13. Cusato J, Tomasello C, Simiele M, Calcagno A, Bonora S, Marinaro L, et al. Efavirenz pharmacogenetics in a cohort of Italian patients. Int J Antimicrob Agents. 2016;47(2):117-23. [DOI:10.1016/j.ijantimicag.2015.11.012] [PMID]
14. de Almeida Velozo C, de Almeida TB, de Azevedo MCVM, Espasandin I, da Cunha Pinto JF, López S, et al. Polymorphisms at CYP enzymes, NR1I2 and NR1I3 in association with virologic response to antiretroviral therapy in Brazilian HIV-positive individuals. Pharmacogenomics Journal. 2022;22(1):33-8. [DOI:10.1038/s41397-021-00254-4] [PMID]
15. Derungs A, Donzelli M, Serratore MG, Noppen C, Krahenbuhl S, Haschke M. CYP2B6-PHENOTYPING USING LOW DOSE EFAVIRENZ. BRITISH JOURNAL OF CLINICAL PHARMACOLOGY. 2011;72:41-.
16. Desta Z, Ward BA, Flockhart DA, Richter T, Klein K, Zanger UM. Genetic variants of CYP2B6 decrease rate of efavirenz metabolism in vitro. CLINICAL PHARMACOLOGY & THERAPEUTICS. 2005;77(2):P24-P. [DOI:10.1016/j.clpt.2004.11.093]
17. Dhoro M, Ngara B, Kadzirange G, Nhachi C, Masimirembwa C. Genetic variants of drug metabolizing enzymes and drug transporter (ABCB1) as possible biomarkers for adverse drug reactions in an HIV/AIDS cohort in Zimbabwe. Curr HIV Res. 2013;11(6):481-90. [DOI:10.2174/1570162X113119990048] [PMID]
18. di Iulio J, Fayet A, Arab-Alameddine M, Rotger M, Lubomirov R, Cavassini M, et al. In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function. Pharmacogenet Genomics. 2009;19(4):300-9. [DOI:10.1097/FPC.0b013e328328d577] [PMID]
19. Duarte H, Cruz JP, Aniceto N, Ribeiro AC, Fernandes A, Paixão P, et al. Population Approach to Efavirenz Therapy. J Pharm Sci. 2017;106(10):3161-6. [DOI:10.1016/j.xphs.2017.06.004] [PMID]
20. Elens L, Vandercam B, Yombi JC, Lison D, Wallemacq P, Haufroid V. Influence of host genetic factors on efavirenz plasma and intracellular pharmacokinetics in HIV-1-infected patients. Pharmacogenomics. 2010;11(9):1223-34. [DOI:10.2217/pgs.10.94] [PMID]
21. Lakhman SS, Ma Q, Morse GD. Pharmacogenomics of CYP3A: Considerations for HIV treatment. Pharmacogenomics. 2009;10(8):1323-39. [DOI:10.2217/pgs.09.53] [PMID] []
22. Langmia IM, Just KS, Yamoune S, Brockmoller J, Masimirembwa C, Stingl JC. CYP2B6 Functional Variability in Drug Metabolism and Exposure Across Populations-Implication for Drug Safety, Dosing, and Individualized Therapy. FRONTIERS IN GENETICS. 2021;12. [DOI:10.3389/fgene.2021.692234] [PMID] []
23. Langs-Barlow A, Selvaraj S, Ogbuagu O, Shabanova V, Shapiro ED, Paintsil E. Association of circulating cytochrome c with clinical manifestations of antiretroviral-induced toxicity. Mitochondrion. 2015;20:71-4. [DOI:10.1016/j.mito.2014.11.004] [PMID] []
24. Le Dauphin E, Barrail-Tran A, Brunet A, Bouligand J, Goujard C, Taburet AM. Effect of CYP2B6 genotype on the plasma efavirenz exposure in an African HIV woman. PHARMACY WORLD & SCIENCE. 2009;31(2):331-2.
25. Lee SS, To KW, Lee MP, Wong NS, Chan DP, Li PC, et al. Sleep quality in efavirenz-treated Chinese HIV patients - comparing between GT and GG genotype of CYP2B6-516 G/T polymorphisms. Int J STD AIDS. 2014;25(3):193-200. [DOI:10.1177/0956462413498581] [PMID]
26. Leger P, Chirwa S, Turner M, Richardson DM, Baker P, Leonard M, et al. Pharmacogenetics of efavirenz discontinuation for reported central nervous system symptoms appears to differ by race. Pharmacogenet Genomics. 2016;26(10):473-80. [DOI:10.1097/FPC.0000000000000238] [PMID] []
27. Li J, Menard V, Benish RL, Jurevic RJ, Guillemette C, Stoneking M, et al. Worldwide variation in human drug-metabolism enzyme genes CYP2B6 and UGT2B7: implications for HIV/AIDS treatment. Pharmacogenomics. 2012;13(5):555-70. [DOI:10.2217/pgs.11.160] [PMID] []
28. Li L, Desta Z. THE IMPACT OF CYP2B6 GENOTYPE ON EFAVIRENZ AUTO-INDUCTION: PHARMACOKINETICS MODEL AND SIMULATION. CLINICAL PHARMACOLOGY & THERAPEUTICS. 2009;85:S55-S.
29. Lin AWC, Yam WC, Lam HY, To S, Chan D, Chan KCW, Lee SS. Pharmacogenetic screening: HLA-B*5701 vs. CYP2B6 G516T. HIV MEDICINE. 2011;12(4):255-6. [DOI:10.1111/j.1468-1293.2010.00870.x] [PMID]
30. Lindfelt T, O'Brien J, Song JC, Patel R, Winslow DL. Efavirenz plasma concentrations and cytochrome 2B6 polymorphisms. Ann Pharmacother. 2010;44(10):1572-8. [DOI:10.1345/aph.1P141] [PMID]
31. Chamnanphon M, Sukprasong R, Gaedigk A, Manosuthi W, Chariyavilaskul P, Wittayalertpanya S, et al. Influence of SULT1A1*2 Polymorphism on Plasma Efavirenz Concentration in Thai HIV-1 Patients. Pharmgenomics Pers Med. 2021;14:915-26. [DOI:10.2147/PGPM.S306358] [PMID] []
32. Bushyakanist A, Puangpetch A, Sukasem C, Kiertiburanakul S. The use of pharmacogenetics in clinical practice for the treatment of individuals with HIV infection in Thailand. Pharmgenomics Pers Med. 2015;8:163-70. [DOI:10.2147/PGPM.S86444] [PMID] []
33. Ribaudo HJ, Liu HA, Schwab M, Schaeffeler E, Eichelbaum M, Motsinger-Reif AA, et al. Effect of CYP2B6, ABCB1, and CYP3A5 Polymorphisms on Efavirenz Pharmacokinetics and Treatment Response: An AIDS Clinical Trials Group Study. JOURNAL OF INFECTIOUS DISEASES. 2010;202(5):717-22. [DOI:10.1086/655470] [PMID] []
34. Haas DW, Gebretsadik T, Mayo G, Menon UN, Acosta EP, Shintani A, et al. Associations between CYP2B6 polymorphisms and pharmacokinetics after a single dose of nevirapine or efavirenz in African americans. J Infect Dis. 2009;199(6):872-80. [DOI:10.1086/597125] [PMID] []
35. Wyen C, Hendra H, Vogel M, Hoffmann C, Knechten H, Brockmeyer NH, et al. Impact of CYP2B6 983T>C polymorphism on non-nucleoside reverse transcriptase inhibitor plasma concentrations in HIV-infected patients. J Antimicrob Chemother. 2008;61(4):914-8. [DOI:10.1093/jac/dkn029] [PMID] []
36. Haas DW, Smeaton LM, Shafer RW, Robbins GK, Morse GD, Labbe L, et al. Pharmacogenetics of long-term responses to antiretroviral regimens containing Efavirenz and/or Nelfinavir: an Adult Aids Clinical Trials Group Study. J Infect Dis. 2005;192(11):1931-42. [DOI:10.1086/497610] [PMID]
37. Nkenfou CN, Tiedeu BA, Nkenfou CN, Nji AM, Chedjou JP, Fomboh CT, et al. Adverse drug reactions associated with CYP 2b6 polymorphisms in HIV/AIDS-treated patients in Yaoundé, Cameroon. Application of Clinical Genetics. 2019;12:261-8. [DOI:10.2147/TACG.S226318] [PMID] []
38. Ngayo MO, Oluka M, Kwena ZA, Bulimo WD, Okalebo FA. Effects of cytochrome P450 2B6 and constitutive androstane receptor genetic variation on Efavirenz plasma concentrations among HIV patients in Kenya. PLoS One. 2022;17(3):e0260872. [DOI:10.1371/journal.pone.0260872] [PMID] []
39. Mehlotra RK, Cheruvu VK, Zikursh MJB, Benish RL, Lederman MM, Salata RA, et al. Chemokine (C-C motif) receptor 5 -2459 genotype in patients receiving highly active antiretroviral therapy: Race-specific influence on virologic success. Journal of Infectious Diseases. 2011;204(2):291-8. [DOI:10.1093/infdis/jir262] [PMID] []
40. Wang PF, Neiner A, Kharasch ED. Efavirenz Metabolism: Influence of Polymorphic CYP2B6 Variants and Stereochemistry. Drug Metab Dispos. 2019;47(10):1195-205. [DOI:10.1124/dmd.119.086348] [PMID] []
41. Habtewold A, Amogne W, Makonnen E, Yimer G, Riedel K, Ueda N, et al. Long-term effect of efavirenz autoinduction on plasma/peripheral blood mononuclear cell drug exposure and CD4 count is influenced by UGT2B7 and CYP2B6 genotypes among HIV patients. Journal of Antimicrobial Chemotherapy. 2011;66(10):2350-61. [DOI:10.1093/jac/dkr304] [PMID]
42. Ritchie MD, Haas DW, Motsinger AA, Donahue JP, Erdem H, Raffanti S, et al. Drug transporter and metabolizing enzyme gene variants and nonnucleoside reverse-transcriptase inhibitor hepatotoxicity. Clin Infect Dis. 2006;43(6):779-82. [DOI:10.1086/507101] [PMID]
43. Guidi M, Arab-Alameddine M, Rotger M, Aouri M, Telenti A, Decosterd LA, et al. Dosage Optimization of Treatments Using Population Pharmacokinetic Modeling and Simulation. CHIMIA. 2012;66(5):291-5. [DOI:10.2533/chimia.2012.291] [PMID]
44. Bunu SJ, Owaba ADC, Vaikosen EN, Ebeshi BU. The Cyp2b6 Gene Polymorphism and Phenotypic Correlation of Efavirenz-Based Combination Therapy Among the Niger Delta Ethnic Population: Implications in Modern Pharmacogenomics. Pharmgenomics Pers Med. 2022;15:45-54. [DOI:10.2147/PGPM.S345038] [PMID] []
45. Nagata K. Drug metabolism catalyzed by cytochrome P-450. Folia Pharmacologica Japonica. 2009;134(3):146-8. [DOI:10.1254/fpj.134.146] [PMID]
46. Ford GR, Niehaus A, Joubert F, Pepper MS. Pharmacogenetics of CYP2A6, CYP2B6, and UGT2B7 in the Context of HIV Treatments in African Populations. J Pers Med. 2022;12(12). [DOI:10.3390/jpm12122013] [PMID] []
47. Huang LS, Carey V, Lindsey JC, Marzan F, Gingrich D, Graham B, et al. Concomitant nevirapine impacts pharmacokinetic exposure to the antimalarial artemether-lumefantrine in African children. PLOS ONE. 2017;12(10). [DOI:10.1371/journal.pone.0186589] [PMID] []
48. Leger P, Dillingham R, Beauharnais CA, Kashuba AD, Rezk NL, Fitzgerald DW, et al. CYP2B6 variants and plasma efavirenz concentrations during antiretroviral therapy in Port-au-Prince, Haiti. J Infect Dis. 2009;200(6):955-64. [DOI:10.1086/605126] [PMID] []
49. Sandherr M, Maschmeyer G. Pharmacology and metabolism of voriconazole and posaconazole in the treatment of invasive aspergillosis - Review of the literature. European Journal of Medical Research. 2011;16(4):139-44. [DOI:10.1186/2047-783X-16-4-139] [PMID] []
50. Li D, Xie AH, Liu Z, Li D, Ning B, Thakkar S, et al. Linking pharmacogenomic information on drug safety and efficacy with ethnic minority populations. Pharmaceutics. 2020;12(11):1-10. [DOI:10.3390/pharmaceutics12111021] [PMID] []
51. Ngaimisi E, Habtewold A, Minzi O, Makonnen E, Mugusi S, Amogne W, et al. Importance of ethnicity, CYP2B6 and ABCB1 genotype for efavirenz pharmacokinetics and treatment outcomes: a parallel-group prospective cohort study in two sub-Saharan Africa populations. PLoS One. 2013;8(7):e67946. [DOI:10.1371/journal.pone.0067946] [PMID] []
52. Haas DW, Kwara A, Richardson DM, Baker P, Papageorgiou I, Acosta EP, et al. Secondary metabolism pathway polymorphisms and plasma efavirenz concentrations in HIV-infected adults with CYP2B6 slow metabolizer genotypes. J Antimicrob Chemother. 2014;69(8):2175-82. [DOI:10.1093/jac/dku110] [PMID] []
53. Damronglerd P, Sukasem C, Thipmontree W, Puangpetch A, Kiertiburanakul S. Apharmacogenomic prospective randomized controlled trial of CYP2B6 polymorphisms and efavirenz dose adjustment among HI V-infected Thai patients: A pilot study. Pharmacogenomics and Personalized Medicine. 2015;8:155-62. [DOI:10.2147/PGPM.S86446] [PMID] []
54. Queiroz MAF, Laurentino RV, Amoras EDG, de Araujo MSM, Gomes STM, Lima SS, et al. The CYP2B6 G516T polymorphism influences CD4(+) T-cell counts in HIV-positive patients receiving antiretroviral therapy in an ethnically diverse region of the Amazon. INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES. 2017;55:4-10. [DOI:10.1016/j.ijid.2016.12.002] [PMID]
55. Dickinson L, Amin J, Else L, Boffito M, Egan D, Owen A, et al. Comprehensive Pharmacokinetic, Pharmacodynamic and Pharmacogenetic Evaluation of Once-Daily Efavirenz 400 and 600 mg in Treatment-Naïve HIV-Infected Patients at 96 Weeks: Results of the ENCORE1 Study. Clin Pharmacokinet. 2016;55(7):861-73. [DOI:10.1007/s40262-015-0360-5] [PMID] []
56. Tadesse WT, Mlugu EM, Shibeshi W, Degu WA, Engidawork E, Aklillu E. CYP3A and CYP2B6 Genotype Predicts Glucose Metabolism Disorder among HIV Patients on Long-Term Efavirenz-Based ART: A Case-Control Study. J Pers Med. 2022;12(7). [DOI:10.3390/jpm12071087] [PMID] []
57. Marin JJG, Serrano MA, Monte MJ, Sanchez-Martin A, Temprano AG, Briz O, Romero MR. Role of genetic variations in the hepatic handling of drugs. International Journal of Molecular Sciences. 2020;21(8). [DOI:10.3390/ijms21082884] [PMID] []
58. Mollan KR, Tierney C, Hellwege JN, Eron JJ, Hudgens MG, Gulick RM, et al. Race/Ethnicity and the Pharmacogenetics of Reported Suicidality With Efavirenz Among Clinical Trials Participants. J Infect Dis. 2017;216(5):554-64. [DOI:10.1093/infdis/jix248] [PMID] []
59. Müller TE, Ellwanger JH, Michita RT, Matte MCC, Renner JDP. CYP2B6 516 G>T polymorphism and side effects of the central nervous system in HIV-positive individuals under Efavirenz treatment: Study of a sample from southern Brazil. An Acad Bras Cienc. 2017;89(1 Suppl 0):497-504. [DOI:10.1590/0001-3765201720160355] [PMID]
60. Maseng MJ, Tawe L, Thami PK, Seatla KK, Moyo S, Martinelli A, et al. Association of CYP2B6 Genetic Variation with Efavirenz and Nevirapine Drug Resistance in HIV-1 Patients from Botswana. Pharmgenomics Pers Med. 2021;14:335-47. https://doi.org/10.2147/PGPM.S312741 [DOI:10.2147/PGPM.S289471]
61. Tawe L, Motshoge T, Ramatlho P, Mutukwa N, Muthoga CW, Dongho GBD, et al. Human cytochrome P450 2B6 genetic variability in Botswana: a case of haplotype diversity and convergent phenotypes. SCIENTIFIC REPORTS. 2018;8. [DOI:10.1038/s41598-018-23350-1] [PMID] []
62. Marais A, Osuch E, Steenkamp V, Ledwaba L. Important pharmacogenomic aspects in the management of HIV/AIDS. South African Family Practice. 2019;61(1):17-20. [DOI:10.4102/safp.v61i1.5047]
63. Niedrig DF, Rahmany A, Heib K, Hatz KD, Ludin K, Burden AM, et al. Clinical relevance of a 16-gene pharmacogenetic panel test for medication management in a cohort of 135 patients. Journal of Clinical Medicine. 2021;10(15). [DOI:10.3390/jcm10153200] [PMID] []
64. Mukonzo JK, Okwera A, Nakasujja N, Luzze H, Sebuwufu D, Ogwal-Okeng J, et al. Influence of efavirenz pharmacokinetics and pharmacogenetics on neuropsychological disorders in Ugandan HIV-positive patients with or without tuberculosis: a prospective cohort study. BMC Infect Dis. 2013;13:261. [DOI:10.1186/1471-2334-13-261] [PMID] []
65. Rodriguez-Novoa S, Barreiro P, Rendon A, Jimenez-Nacher I, Gonzalez-Lahoz J, Soriano V. Influence of 516G > T polymorphisms at the gene encoding the CYP450-2B6 isoenzyme on efavirenz plasma concentrations in HIV-infected subjects. CLINICAL INFECTIOUS DISEASES. 2005;40(9):1358-61. [DOI:10.1086/429327] [PMID]
66. Mangó K, Kiss Á F, Fekete F, Erdős R, Monostory K. CYP2B6 allelic variants and non-genetic factors influence CYP2B6 enzyme function. Sci Rep. 2022;12(1):2984. [DOI:10.1038/s41598-022-07022-9] [PMID] []
67. Gatanaga H, Hayashida T, Tsuchiya K, Yoshino M, Kuwahara T, Tsukada H, et al. Successful efavirenz dose reduction in HIV type 1-infected individuals with cytochrome P450 2B6 *6 and *26. Clin Infect Dis. 2007;45(9):1230-7. [DOI:10.1086/522175] [PMID]
68. Kim B, Yoon DY, Lee S, Jang IJ, Yu KS, Cho JY, Oh J. Comprehensive analysis of important pharmacogenes in Koreans using the DMET™ platform. Translational and Clinical Pharmacology. 2021;29(3):135-49. [DOI:10.12793/tcp.2021.29.e14] [PMID] []
69. De Almeida TB, De Azevedo MCVM, Da Cunha Pinto JF, De Almeida Ferry FR, Da Silva GAR, De Castro IJ, et al. Drug metabolism and transport gene polymorphisms and efavirenz adverse effects in Brazilian HIV-positive individuals. Journal of Antimicrobial Chemotherapy. 2018;73(9):2460-7. [DOI:10.1093/jac/dky190] [PMID] []
70. Kleinstein SE, Shea PR, Stamm LM, Sulkowski M, Goldstein DB, Naggie S. Association of CYP2B6 Single-Nucleotide Polymorphisms Altering Efavirenz Metabolism With Hepatitis C Virus (HCV) Treatment Relapse Among Human Immunodeficiency Virus/HCV-Coinfected African Americans Receiving Ledipasvir/Sofosbuvir in the ION-4 Trial. Clin Infect Dis. 2018;66(12):1953-6. [DOI:10.1093/cid/cix1051] [PMID]
71. Meng X, Yin K, Wang J, Dong P, Liu L, Shen Y, et al. Effect of CYP2B6 Gene Polymorphisms on Efavirenz Plasma Concentrations in Chinese Patients with HIV Infection. PLoS One. 2015;10(6):e0130583. [DOI:10.1371/journal.pone.0130583] [PMID] []
72. Gounden V, van Niekerk C, Snyman T, George JA. Presence of the CYP2B6 516G > T polymorphism, increased plasma Efavirenz concentrations and early neuropsychiatric side effects in South African HIV-infected patients. AIDS RESEARCH AND THERAPY. 2010;7. [DOI:10.1186/1742-6405-7-32] [PMID] []
73. Winston A, Amin J, Clarke A, Else L, Amara A, Owen A, et al. Cerebrospinal fluid exposure of efavirenz and its major metabolites when dosed at 400 mg and 600 mg once daily: a randomized controlled trial. Clin Infect Dis. 2015;60(7):1026-32. [DOI:10.1093/cid/ciu976] [PMID]
74. Mukonzo JK, Owen JS, Ogwal-Okeng J, Kuteesa RB, Nanzigu S, Sewankambo N, et al. Pharmacogenetic-based efavirenz dose modification: suggestions for an African population and the different CYP2B6 genotypes. PLoS One. 2014;9(1):e86919. [DOI:10.1371/journal.pone.0086919] [PMID] []
75. Lee KY, Lin SW, Sun HY, Kuo CH, Tsai MS, Wu BR, et al. Therapeutic drug monitoring and pharmacogenetic study of HIV-infected ethnic Chinese receiving efavirenz-containing antiretroviral therapy with or without rifampicin-based anti-tuberculous therapy. PLoS One. 2014;9(2):e88497. [DOI:10.1371/journal.pone.0088497] [PMID] []
76. Oka S. Side effect of efavirenz and CYP2B6*6/*6. Japanese Journal of Clinical Pharmacology and Therapeutics. 2013;44(3):233. [DOI:10.3999/jscpt.44.233]
77. Wyen C, Hendra H, Siccardi M, Platten M, Jaeger H, Harrer T, et al. Cytochrome P450 2B6 (CYP2B6) and constitutive androstane receptor (CAR) polymorphisms are associated with early discontinuation of efavirenz-containing regimens. J Antimicrob Chemother. 2011;66(9):2092-8. [DOI:10.1093/jac/dkr272] [PMID]
78. Sarfo FS, Zhang Y, Egan D, Tetteh LA, Phillips R, Bedu-Addo G, et al. Pharmacogenetic associations with plasma efavirenz concentrations and clinical correlates in a retrospective cohort of Ghanaian HIV-infected patients. J Antimicrob Chemother. 2014;69(2):491-9. [DOI:10.1093/jac/dkt372] [PMID]
79. Johnston J, Wiesner L, Smith P, Maartens G, Orrell C. Correlation of hair and plasma efavirenz concentrations in HIV-positive South Africans. South Afr J HIV Med. 2019;20(1):881. [DOI:10.4102/sajhivmed.v20i1.881] [PMID] []
80. Glass TR, Rotger M, Telenti A, Decosterd L, Csajka C, Bucher HC, et al. Determinants of sustained viral suppression in HIV-infected patients with self-reported poor adherence to antiretroviral therapy. PLoS One. 2012;7(1):e29186. [DOI:10.1371/journal.pone.0029186] [PMID] []
81. Masebe TM, Bessong PO, Nwobegahay J, Ndip RN, Meyer D. Prevalence of MDR1 C3435T and CYP2B6 G516T polymorphisms among HIV-1 infected South African patients. Dis Markers. 2012;32(1):43-50. [DOI:10.1155/2012/453479] [PMID] []
82. Haas DW, Severe P, Jean Juste MA, Pape JW, Fitzgerald DW. Functional CYP2B6 variants and virologic response to an efavirenz-containing regimen in Port-au-Prince, Haiti. J Antimicrob Chemother. 2014;69(8):2187-90. [DOI:10.1093/jac/dku088] [PMID] []
83. Nguefeu Nkenfou C, Atogho Tiedeu B, Nguefeu Nkenfou C, Nji AM, Chedjou JP, Tah Fomboh C, et al. Adverse Drug Reactions Associated with CYP 2B6 Polymorphisms in HIV/AIDS-Treated Patients in Yaoundé, Cameroon. Appl Clin Genet. 2019;12:261-8. [DOI:10.2147/TACG.S226318] [PMID] []
84. Carr DF, la Porte CJ, Pirmohamed M, Owen A, Cortes CP. Haplotype structure of CYP2B6 and association with plasma efavirenz concentrations in a Chilean HIV cohort. J Antimicrob Chemother. 2010;65(9):1889-93. [DOI:10.1093/jac/dkq260] [PMID] []
85. Mugusi S, Ngaimisi E, Janabi M, Mugusi F, Minzi O, Aris E, et al. Neuropsychiatric manifestations among HIV-1 infected African patients receiving efavirenz-based cART with or without tuberculosis treatment containing rifampicin. Eur J Clin Pharmacol. 2018;74(11):1405-15. [DOI:10.1007/s00228-018-2499-0] [PMID] []
86. Jithesh PV, Abuhaliqa M, Syed N, Ahmed I, El Anbari M, Bastaki K, et al. A population study of clinically actionable genetic variation affecting drug response from the Middle East. npj Genomic Medicine. 2022;7(1). [DOI:10.1038/s41525-022-00281-5] [PMID] []
87. Haas DW, Ribaudo H, Kim RB, Tierney C, Wilkinson GR, Gulick RA, et al. Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS. 2004;18(18):2391-400.
88. Rotger M, Colombo S, Furrer H, Bleiber G, Buclin T, Lee BL, et al. Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet Genomics. 2005;15(1):1-5. [DOI:10.1097/01213011-200501000-00001] [PMID]
89. Mukonzo JK, Nanzigu S, Waako P, Ogwal-Okeng J, Gustafson LL, Aklillu E. CYP2B6 genotype, but not rifampicin-based anti-TB cotreatments, explains variability in long-term efavirenz plasma exposure. Pharmacogenomics. 2014;15(11):1423-35. [DOI:10.2217/pgs.14.73] [PMID]
90. Mo SL, Liu YH, Duan W, Wei MQ, Kanwar JR, Zhou SF. Substrate specificity, regulation, and polymorphism of human cytochrome P450 2B6. Curr Drug Metab. 2009;10(7):730-53. [DOI:10.2174/138920009789895534] [PMID]
91. Kwara A, Lartey M, Sagoe KW, Rzek NL, Court MH. CYP2B6 (c.516G -> T) and CYP2A6 (*9B and/or*17) polymorphisms are independent predictors of efavirenz plasma concentrations in HIV-infected patients. BRITISH JOURNAL OF CLINICAL PHARMACOLOGY. 2009;67(4):427-36. [DOI:10.1111/j.1365-2125.2009.03368.x] [PMID] []
92. Xu C, Ogburn ET, Guo Y, Desta Z. Effects of the CYP2B6*6 allele on catalytic properties and inhibition of CYP2B6 in vitro: implication for the mechanism of reduced efavirenz metabolism and other CYP2B6 substrates in vivo. Drug Metab Dispos. 2012;40(4):717-25. [DOI:10.1124/dmd.111.042416] [PMID] []
93. Xu C, Quinney SK, Guo Y, Hall SD, Li L, Desta Z. CYP2B6 pharmacogenetics-based in vitro-in vivo extrapolation of efavirenz clearance by physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2013;41(12):2004-11. [DOI:10.1124/dmd.113.051755] [PMID] []
94. Sánchez-Martín A, Cabrera Figueroa S, Cruz R, Porras-Hurtado L, Calvo-Boyero F, Rasool M, et al. Gene-gene interactions between DRD3, MRP4 and CYP2B6 polymorphisms and its influence on the pharmacokinetic parameters of efavirenz in HIV infected patients. Drug Metab Pharmacokinet. 2016;31(5):349-55. [DOI:10.1016/j.dmpk.2016.06.001] [PMID]
95. Sukasem C, Chamnanphon M, Koomdee N, Puangpetch A, Santon S, Jantararoungtong T, et al. High plasma efavirenz concentration and CYP2B6 polymorphisms in Thai HIV-1 infections. Drug Metab Pharmacokinet. 2013;28(5):391-7. [DOI:10.2133/dmpk.DMPK-12-RG-120] [PMID]
96. Alghamdi WA, Antwi S, Enimil A, Yang H, Dompreh A, Wiesner L, et al. Population pharmacokinetics of efavirenz in HIV and TB/HIV coinfected children: the significance of genotype-guided dosing. J Antimicrob Chemother. 2019;74(9):2698-706. [DOI:10.1093/jac/dkz238] [PMID] []

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | {Sarem Journal of Medical Research}

Designed & Developed by : Yektaweb