1. Abdullah KAL, Atazhanova T, Chavez-Badiola A, Shivhare SB. Automation in ART: Paving the Way for the Future of Infertility Treatment. Reprod Sci. 2023;30(4):1006-16. [
DOI:10.1007/s43032-022-00941-y] [
PMID] [
]
2. Ahlström A, Berntsen J, Johansen M, Bergh C, Cimadomo D, Hardarson T, Lundin K. Correlations between a deep learning-based algorithm for embryo evaluation with cleavage-stage cell numbers and fragmentation. Reprod Biomed Online. 2023;47(6):103408. [
DOI:10.1016/j.rbmo.2023.103408] [
PMID]
3. Al Rahwanji MJ, Abouras H, Shammout MS, Altalla R, Al Sakaan R, Alhalabi N, Alhalabi M. The optimal period for oocyte retrieval after the administration of recombinant human chorionic gonadotropin in in vitro fertilization. BMC Pregnancy Childbirth. 2022;22(1):184. [
DOI:10.1186/s12884-022-04412-9] [
PMID] [
]
4. Arsalan M, Haider A, Choi J, Park KR. Detecting Blastocyst Components by Artificial Intelligence for Human Embryological Analysis to Improve Success Rate of In Vitro Fertilization. J Pers Med. 2022;12(2). [
DOI:10.3390/jpm12020124] [
PMID] [
]
5. Aziz A, Pane S, Iacovacci V, Koukourakis N, Czarske J, Menciassi A, et al. Medical Imaging of Microrobots: Toward In Vivo Applications. ACS Nano. 2020;14(9):10865-93. [
DOI:10.1021/acsnano.0c05530] [
PMID]
6. Babayev E. Man versus machine in in vitro fertilization-can artificial intelligence replace physicians? Fertil Steril. 2020;114(5):963. [
DOI:10.1016/j.fertnstert.2020.07.042] [
PMID]
7. Babayev E, Feinberg EC. Embryo through the lens: from time-lapse cinematography to artificial intelligence. Fertil Steril. 2020;113(2):342-3. [
DOI:10.1016/j.fertnstert.2019.12.001] [
PMID]
8. Bamford T, Smith R, Easter C, Dhillon-Smith R, Barrie A, Montgomery S, et al. Association between a morphokinetic ploidy prediction model risk score and miscarriage and live birth: a multicentre cohort study. Fertil Steril. 2023;120(4):834-43. [
DOI:10.1016/j.fertnstert.2023.06.006] [
PMID]
9. Barnes J, Brendel M, Gao VR, Rajendran S, Kim J, Li Q, et al. A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study. Lancet Digit Health. 2023;5(1):e28-e40. [
DOI:10.1016/S2589-7500(22)00213-8] [
PMID]
10. Barnett-Itzhaki Z, Elbaz M, Butterman R, Amar D, Amitay M, Racowsky C, et al. Machine learning vs. classic statistics for the prediction of IVF outcomes. J Assist Reprod Genet. 2020;37(10):2405-12. [
DOI:10.1007/s10815-020-01908-1] [
PMID] [
]
11. Berman A, Anteby R, Efros O, Klang E, Soffer S. Deep learning for embryo evaluation using time-lapse: a systematic review of diagnostic test accuracy. Am J Obstet Gynecol. 2023;229(5):490-501. [
DOI:10.1016/j.ajog.2023.04.027] [
PMID]
12. Berntsen J, Rimestad J, Lassen JT, Tran D, Kragh MF. Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences. PLoS One. 2022;17(2):e0262661. [
DOI:10.1371/journal.pone.0262661] [
PMID] [
]
13. Bori L, Meseguer M. Will the introduction of automated ART laboratory systems render the majority of embryologists redundant? Reprod Biomed Online. 2021;43(6):979-81. [
DOI:10.1016/j.rbmo.2021.10.002] [
PMID]
14. Bori L, Paya E, Alegre L, Viloria TA, Remohi JA, Naranjo V, Meseguer M. Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential. Fertil Steril. 2020;114(6):1232-41. [
DOI:10.1016/j.fertnstert.2020.08.023] [
PMID]
15. Bormann CL, Curchoe CL, Thirumalaraju P, Kanakasabapathy MK, Gupta R, Pooniwala R, et al. Deep learning early warning system for embryo culture conditions and embryologist performance in the ART laboratory. J Assist Reprod Genet. 2021;38(7):1641-6.
https://doi.org/10.1007/s10815-021-02225-x [
DOI:10.1007/s10815-021-02198-x]
16. Bormann CL, Kanakasabapathy MK, Thirumalaraju P, Gupta R, Pooniwala R, Kandula H, et al. Performance of a deep learning based neural network in the selection of human blastocysts for implantation. Elife. 2020;9. [
DOI:10.7554/eLife.55301] [
PMID] [
]
17. Brązert M, Kranc W, Celichowski P, Jankowski M, Piotrowska-Kempisty H, Pawelczyk L, et al. Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro. Mol Med Rep. 2020;21(4):1749-60. [
DOI:10.3892/mmr.2020.10972] [
PMID] [
]
18. Buldo-Licciardi J, Large MJ, McCulloh DH, McCaffrey C, Grifo JA. Utilization of standardized preimplantation genetic testing for aneuploidy (PGT-A) via artificial intelligence (AI) technology is correlated with improved pregnancy outcomes in single thawed euploid embryo transfer (STEET) cycles. J Assist Reprod Genet. 2023;40(2):289-99. [
DOI:10.1007/s10815-022-02695-7] [
PMID] [
]
19. Campanholi SP, Garcia Neto S, Pinheiro GM, Nogueira MFG, Rocha JC, Losano JDA, et al. Can in vitro embryo production be estimated from semen variables in Senepol breed by using artificial intelligence? Front Vet Sci. 2023;10:1254940. [
DOI:10.3389/fvets.2023.1254940] [
PMID] [
]
20. Canovas S, Ivanova E, Hamdi M, Perez-Sanz F, Rizos D, Kelsey G, Coy P. Culture Medium and Sex Drive Epigenetic Reprogramming in Preimplantation Bovine Embryos. Int J Mol Sci. 2021;22(12). [
DOI:10.3390/ijms22126426] [
PMID] [
]
21. Caroppo E, Colpi GM. Prediction of sperm retrieval with the aid of machine-learning models cannot help in the management of patients with non-obstructive azoospermia when a less-effective surgical treatment is used. Hum Reprod. 2020;35(12):2872-3. [
DOI:10.1093/humrep/deaa260] [
PMID]
22. Charnpinyo N, Suthicharoenpanich K, Onthuam K, Engphaiboon S, Chaichaowarat R, Suebthawinkul C, Siricharoen P. Embryo Selection for IVF using Machine Learning Techniques Based on Light Microscopic Images of Embryo and Additional Factors. Annu Int Conf IEEE Eng Med Biol Soc. 2023;2023:1-4. [
DOI:10.1109/EMBC40787.2023.10340767] [
PMID]
23. Chavez-Badiola A, Flores-Saiffe Farias A, Mendizabal-Ruiz G, Garcia-Sanchez R, Drakeley AJ, Garcia-Sandoval JP. Predicting pregnancy test results after embryo transfer by image feature extraction and analysis using machine learning. Sci Rep. 2020;10(1):4394. [
DOI:10.1038/s41598-020-61357-9] [
PMID] [
]
24. Chavez-Badiola A, Flores-Saiffe-Farías A, Mendizabal-Ruiz G, Drakeley AJ, Cohen J. Embryo Ranking Intelligent Classification Algorithm (ERICA): artificial intelligence clinical assistant predicting embryo ploidy and implantation. Reprod Biomed Online. 2020;41(4):585-93. [
DOI:10.1016/j.rbmo.2020.07.003] [
PMID]
25. Chéles DS, Molin EAD, Rocha JC, Nogueira MFG. Mining of variables from embryo morphokinetics, blastocyst's morphology and patient parameters: an approach to predict the live birth in the assisted reproduction service. JBRA Assist Reprod. 2020;24(4):470-9. [
DOI:10.5935/1518-0557.20200014] [
PMID] [
]
26. Chen F, Chen Y, Mai Q. Multi-Omics Analysis and Machine Learning Prediction Model for Pregnancy Outcomes After Intracytoplasmic Sperm Injection-in vitro Fertilization. Front Public Health. 2022;10:924539. [
DOI:10.3389/fpubh.2022.924539] [
PMID] [
]
27. Chen Y, Wei H, Liu Y, Gao F, Chen Z, Wang P, et al. Identification of new protein biomarkers associated with the boar fertility using iTRAQ-based quantitative proteomic analysis. Int J Biol Macromol. 2020;162:50-9. [
DOI:10.1016/j.ijbiomac.2020.06.102] [
PMID]
28. Chen Z, Wang Z, Du M, Liu Z. Artificial Intelligence in the Assessment of Female Reproductive Function Using Ultrasound: A Review. J Ultrasound Med. 2022;41(6):1343-53. [
DOI:10.1002/jum.15827] [
PMID] [
]
29. Chen Z, Zhang D, Zhen J, Sun Z, Yu Q. Predicting cumulative live birth rate for patients undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) for tubal and male infertility: a machine learning approach using XGBoost. Chin Med J (Engl). 2022;135(8):997-9. [
DOI:10.1097/CM9.0000000000001874] [
PMID] [
]
30. Chermuła B, Kranc W, Jopek K, Budna-Tukan J, Hutchings G, Dompe C, et al. Human Cumulus Cells in Long-Term In Vitro Culture Reflect Differential Expression Profile of Genes Responsible for Planned Cell Death and Aging-A Study of New Molecular Markers. Cells. 2020;9(5). [
DOI:10.3390/cells9051265] [
PMID] [
]
31. Chow DJX, Wijesinghe P, Dholakia K, Dunning KR. Does artificial intelligence have a role in the IVF clinic? Reprod Fertil. 2021;2(3):C29-c34. [
DOI:10.1530/RAF-21-0043] [
PMID] [
]
32. Cimadomo D, Innocenti F, Taggi M, Saturno G, Campitiello MR, Guido M, et al. How should the best human embryo in vitro be? Current and future challenges for embryo selection. Minerva Obstet Gynecol. 2023. [
DOI:10.23736/S2724-606X.23.05296-X] [
PMID]
33. Cimadomo D, Sosa Fernandez L, Soscia D, Fabozzi G, Benini F, Cesana A, et al. Inter-centre reliability in embryo grading across several IVF clinics is limited: implications for embryo selection. Reprod Biomed Online. 2022;44(1):39-48. [
DOI:10.1016/j.rbmo.2021.09.022] [
PMID]
34. Correa N, Cerquides J, Arcos JL, Vassena R. Supporting first FSH dosage for ovarian stimulation with machine learning. Reprod Biomed Online. 2022;45(5):1039-45. [
DOI:10.1016/j.rbmo.2022.06.010] [
PMID]
35. Correa N, Cerquides J, Arcos JL, Vassena R, Popovic M. Personalizing the first dose of FSH for IVF/ICSI patients through machine learning: a non-inferiority study protocol for a multi-center randomized controlled trial. Trials. 2024;25(1):38. [
DOI:10.1186/s13063-024-07907-2] [
PMID] [
]
36. Costa M, Strumane A, Raes A, Van Soom A, Babin D, Aelterman J. Deep-Learning Based Quantification of Bovine Oocyte Quality From Microscopy Images(). Annu Int Conf IEEE Eng Med Biol Soc. 2023;2023:1-4. [
DOI:10.1109/EMBC40787.2023.10340258] [
PMID]
37. Coticchio G, Borini A, Zacà C, Makrakis E, Sfontouris I. Fertilization signatures as biomarkers of embryo quality. Hum Reprod. 2022;37(8):1704-11. [
DOI:10.1093/humrep/deac123] [
PMID]
38. Curchoe CL. The paper chase and the big data arms race. J Assist Reprod Genet. 2021;38(7):1613-5. [
DOI:10.1007/s10815-021-02122-3] [
PMID] [
]
39. Curchoe CL, Bormann C, Hammond E, Salter S, Timlin C, Williams LB, et al. Assuring quality in assisted reproduction laboratories: assessing the performance of ART Compass - a digital art staff management platform. J Assist Reprod Genet. 2023;40(2):265-78. [
DOI:10.1007/s10815-023-02713-2] [
PMID] [
]
40. Curchoe CL, Malmsten J, Bormann C, Shafiee H, Flores-Saiffe Farias A, Mendizabal G, et al. Predictive modeling in reproductive medicine: Where will the future of artificial intelligence research take us? Fertil Steril. 2020;114(5):934-40. [
DOI:10.1016/j.fertnstert.2020.10.040] [
PMID]
41. Curchoe CL, Tarafdar O, Aquilina MC, Seifer DB. SART CORS IVF registry: looking to the past to shape future perspectives. J Assist Reprod Genet. 2022;39(11):2607-16. [
DOI:10.1007/s10815-022-02634-6] [
PMID] [
]
42. Danardono GB, Erwin A, Purnama J, Handayani N, Polim AA, Boediono A, Sini I. A Homogeneous Ensemble of Robust Pre-defined Neural Network Enables Automated Annotation of Human Embryo Morphokinetics. J Reprod Infertil. 2022;23(4):250-6. [
DOI:10.18502/jri.v23i4.10809] [
PMID] [
]
43. Danardono GB, Handayani N, Louis CM, Polim AA, Sirait B, Periastiningrum G, et al. Embryo ploidy status classification through computer-assisted morphology assessment. AJOG Glob Rep. 2023;3(3):100209. [
DOI:10.1016/j.xagr.2023.100209] [
PMID] [
]
44. Diakiw SM, Hall JMM, VerMilyea M, Lim AYX, Quangkananurug W, Chanchamroen S, et al. An artificial intelligence model correlated with morphological and genetic features of blastocyst quality improves ranking of viable embryos. Reprod Biomed Online. 2022;45(6):1105-17. [
DOI:10.1016/j.rbmo.2022.07.018] [
PMID]
45. Diakiw SM, Hall JMM, VerMilyea MD, Amin J, Aizpurua J, Giardini L, et al. Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF. Hum Reprod. 2022;37(8):1746-59. [
DOI:10.1093/humrep/deac131] [
PMID] [
]
46. Dimitriadis I, Zaninovic N, Badiola AC, Bormann CL. Artificial intelligence in the embryology laboratory: a review. Reprod Biomed Online. 2022;44(3):435-48. [
DOI:10.1016/j.rbmo.2021.11.003] [
PMID]
47. Doody KJ. Infertility Treatment Now and in the Future. Obstet Gynecol Clin North Am. 2021;48(4):801-12. [
DOI:10.1016/j.ogc.2021.07.005] [
PMID]
48. Duval A, Nogueira D, Dissler N, Maskani Filali M, Delestro Matos F, Chansel-Debordeaux L, et al. A hybrid artificial intelligence model leverages multi-centric clinical data to improve fetal heart rate pregnancy prediction across time-lapse systems. Hum Reprod. 2023;38(4):596-608. [
DOI:10.1093/humrep/dead023] [
PMID] [
]
49. Enatsu N, Miyatsuka I, An LM, Inubushi M, Enatsu K, Otsuki J, et al. A novel system based on artificial intelligence for predicting blastocyst viability and visualizing the explanation. Reprod Med Biol. 2022;21(1):e12443. [
DOI:10.1002/rmb2.12443] [
PMID] [
]
50. Fadon P, Gallegos E, Jalota S, Muriel L, Diaz-Garcia C. Time-Lapse Systems: A Comprehensive Analysis on Effectiveness. Semin Reprod Med. 2021;39(5-06):e12-e8. [
DOI:10.1055/s-0041-1742149] [
PMID]
51. Fanton M, Nutting V, Rothman A, Maeder-York P, Hariton E, Barash O, et al. An interpretable machine learning model for individualized gonadotrophin starting dose selection during ovarian stimulation. Reprod Biomed Online. 2022;45(6):1152-9. [
DOI:10.1016/j.rbmo.2022.07.010] [
PMID]
52. Fanton M, Nutting V, Solano F, Maeder-York P, Hariton E, Barash O, et al. An interpretable machine learning model for predicting the optimal day of trigger during ovarian stimulation. Fertil Steril. 2022;118(1):101-8. [
DOI:10.1016/j.fertnstert.2022.04.003] [
PMID]
53. Fernandez EI, Ferreira AS, Cecílio MHM, Chéles DS, de Souza RCM, Nogueira MFG, Rocha JC. Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data. J Assist Reprod Genet. 2020;37(10):2359-76. [
DOI:10.1007/s10815-020-01881-9] [
PMID] [
]
54. Ferrand T, Boulant J, He C, Chambost J, Jacques C, Pena CA, et al. Predicting the number of oocytes retrieved from controlled ovarian hyperstimulation with machine learning. Hum Reprod. 2023;38(10):1918-26. [
DOI:10.1093/humrep/dead163] [
PMID] [
]
55. Firuzinia S, Afzali SM, Ghasemian F, Mirroshandel SA. A robust deep learning-based multiclass segmentation method for analyzing human metaphase II oocyte images. Comput Methods Programs Biomed. 2021;201:105946. [
DOI:10.1016/j.cmpb.2021.105946] [
PMID]
56. Fitz VW, Kanakasabapathy MK, Thirumalaraju P, Kandula H, Ramirez LB, Boehnlein L, et al. Should there be an "AI" in TEAM? Embryologists selection of high implantation potential embryos improves with the aid of an artificial intelligence algorithm. J Assist Reprod Genet. 2021;38(10):2663-70. [
DOI:10.1007/s10815-021-02318-7] [
PMID] [
]
57. Fordham DE, Rosentraub D, Polsky AL, Aviram T, Wolf Y, Perl O, et al. Embryologist agreement when assessing blastocyst implantation probability: is data-driven prediction the solution to embryo assessment subjectivity? Hum Reprod. 2022;37(10):2275-90. [
DOI:10.1093/humrep/deac171] [
PMID]
58. Fu K, Li Y, Lv H, Wu W, Song J, Xu J. Development of a Model Predicting the Outcome of In Vitro Fertilization Cycles by a Robust Decision Tree Method. Front Endocrinol (Lausanne). 2022;13:877518. [
DOI:10.3389/fendo.2022.877518] [
PMID] [
]
59. Garcia-Belda A, Cairó O, Martínez-Moro Á, Cuadros M, Pons MC, de Mendoza MVH, et al. Considerations for future modification of The Association for the Study of Reproductive Biology embryo grading system incorporating time-lapse observations. Reprod Biomed Online. 2024;48(1):103570. [
DOI:10.1016/j.rbmo.2023.103570] [
PMID]
60. Gardner DK. 'The way to improve ART outcomes is to introduce more technologies in the laboratory'. Reprod Biomed Online. 2022;44(3):389-92. [
DOI:10.1016/j.rbmo.2021.10.021] [
PMID]
61. Gardner DK, Sakkas D. Making and selecting the best embryo in the laboratory. Fertil Steril. 2023;120(3 Pt 1):457-66. [
DOI:10.1016/j.fertnstert.2022.11.007] [
PMID]
62. Geller J, Collazo I, Pai R, Hendon N, Lokeshwar SD, Arora H, et al. An Artificial Intelligence-Based Algorithm for Predicting Pregnancy Success Using Static Images Captured by Optical Light Microscopy during Intracytoplasmic Sperm Injection. J Hum Reprod Sci. 2021;14(3):288-92. [
DOI:10.4103/jhrs.jhrs_53_21] [
PMID] [
]
63. Giscard d'Estaing S, Labrune E, Forcellini M, Edel C, Salle B, Lornage J, Benchaib M. A machine learning system with reinforcement capacity for predicting the fate of an ART embryo. Syst Biol Reprod Med. 2021;67(1):64-78. [
DOI:10.1080/19396368.2020.1822953] [
PMID]
64. Glatstein I, Chavez-Badiola A, Curchoe CL. New frontiers in embryo selection. J Assist Reprod Genet. 2023;40(2):223-34. [
DOI:10.1007/s10815-022-02708-5] [
PMID] [
]
65. Go KJ, Hudson C. Deep technology for the optimization of cryostorage. J Assist Reprod Genet. 2023;40(8):1829-34. [
DOI:10.1007/s10815-023-02814-y] [
PMID] [
]
66. Gomez T, Feyeux M, Boulant J, Normand N, David L, Paul-Gilloteaux P, et al. A time-lapse embryo dataset for morphokinetic parameter prediction. Data Brief. 2022;42:108258. [
DOI:10.1016/j.dib.2022.108258] [
PMID] [
]
67. Goswami N, Winston N, Choi W, Lai NZE, Arcanjo RB, Chen X, et al. EVATOM: an optical, label-free, machine learning assisted embryo health assessment tool. Commun Biol. 2024;7(1):268. [
DOI:10.1038/s42003-024-05960-w] [
PMID] [
]
68. Goyal A, Kuchana M, Ayyagari KPR. Machine learning predicts live-birth occurrence before in-vitro fertilization treatment. Sci Rep. 2020;10(1):20925. [
DOI:10.1038/s41598-020-76928-z] [
PMID] [
]
69. Grzegorczyk-Martin V, Roset J, Di Pizio P, Fréour T, Barrière P, Pouly JL, et al. Adaptive data-driven models to best predict the likelihood of live birth as the IVF cycle moves on and for each embryo transfer. J Assist Reprod Genet. 2022;39(8):1937-49. [
DOI:10.1007/s10815-022-02547-4] [
PMID] [
]
70. Gunderson SJ, Puga Molina LC, Spies N, Balestrini PA, Buffone MG, Jungheim ES, et al. Machine-learning algorithm incorporating capacitated sperm intracellular pH predicts conventional in vitro fertilization success in normospermic patients. Fertil Steril. 2021;115(4):930-9. [
DOI:10.1016/j.fertnstert.2020.10.038] [
PMID] [
]
71. Guo X, Zhan H, Zhang X, Pang Y, Xu H, Zhang B, et al. Predictive models for starting dose of gonadotropin in controlled ovarian hyperstimulation: review and progress update. Hum Fertil (Camb). 2023;26(6):1609-16. [
DOI:10.1080/14647273.2023.2285937] [
PMID]
72. Guo Y, Chen P, Li T, Jia L, Zhou Y, Huang J, et al. Single-cell transcriptome and cell-specific network analysis reveal the reparative effect of neurotrophin-4 in preantral follicles grown in vitro. Reprod Biol Endocrinol. 2021;19(1):133. [
DOI:10.1186/s12958-021-00818-w] [
PMID] [
]
73. Hariton E, Pavlovic Z, Fanton M, Jiang VS. Applications of artificial intelligence in ovarian stimulation: a tool for improving efficiency and outcomes. Fertil Steril. 2023;120(1):8-16. [
DOI:10.1016/j.fertnstert.2023.05.148] [
PMID]
74. Hernández-González J, Valls O, Torres-Martín A, Cerquides J. Modeling three sources of uncertainty in assisted reproductive technologies with probabilistic graphical models. Comput Biol Med. 2022;150:106160. [
DOI:10.1016/j.compbiomed.2022.106160] [
PMID]
75. Hickman CFL, Alshubbar H, Chambost J, Jacques C, Pena CA, Drakeley A, Freour T. Data sharing: using blockchain and decentralized data technologies to unlock the potential of artificial intelligence: What can assisted reproduction learn from other areas of medicine? Fertil Steril. 2020;114(5):927-33. [
DOI:10.1016/j.fertnstert.2020.09.160] [
PMID]
76. Hillyear LM, Zak LJ, Beckitt T, Griffin DK, Harvey SC, Harvey KE. Morphokinetic Profiling Suggests That Rapid First Cleavage Division Accurately Predicts the Chances of Blastulation in Pig In Vitro Produced Embryos. Animals (Basel). 2024;14(5). [
DOI:10.3390/ani14050783] [
PMID] [
]
77. Horer S, Feichtinger M, Rosner M, Hengstschläger M. Pluripotent Stem Cell-Derived In Vitro Gametogenesis and Synthetic Embryos-It Is Never Too Early for an Ethical Debate. Stem Cells Transl Med. 2023;12(9):569-75. [
DOI:10.1093/stcltm/szad042] [
PMID] [
]
78. Hori K, Hori K, Kosasa T, Walker B, Ohta A, Ahn HJ, Huang TTF. Comparison of euploid blastocyst expansion with subgroups of single chromosome, multiple chromosome, and segmental aneuploids using an AI platform from donor egg embryos. J Assist Reprod Genet. 2023;40(6):1407-16. [
DOI:10.1007/s10815-023-02797-w] [
PMID] [
]
79. Houri O, Gil Y, Danieli-Gruber S, Shufaro Y, Sapir O, Hochberg A, et al. Prediction of oocyte maturation rate in the GnRH antagonist flexible IVF protocol using a novel machine learning algorithm - A retrospective study. Eur J Obstet Gynecol Reprod Biol. 2023;284:100-4. [
DOI:10.1016/j.ejogrb.2023.03.022] [
PMID]
80. Huang B, Tan W, Li Z, Jin L. An artificial intelligence model (euploid prediction algorithm) can predict embryo ploidy status based on time-lapse data. Reprod Biol Endocrinol. 2021;19(1):185. [
DOI:10.1186/s12958-021-00864-4] [
PMID] [
]
81. Huang TTF, Kosasa T, Walker B, Arnett C, Huang CTF, Yin C, et al. Deep learning neural network analysis of human blastocyst expansion from time-lapse image files. Reprod Biomed Online. 2021;42(6):1075-85. [
DOI:10.1016/j.rbmo.2021.02.015] [
PMID]
82. Huang Y, Li Z, Lin E, He P, Ru G. Oxidative damage-induced hyperactive ribosome biogenesis participates in tumorigenesis of offspring by cross-interacting with the Wnt and TGF-β1 pathways in IVF embryos. Exp Mol Med. 2021;53(11):1792-806. [
DOI:10.1038/s12276-021-00700-0] [
PMID] [
]
83. Iftikhar P, Kuijpers MV, Khayyat A, Iftikhar A, DeGouvia De Sa M. Artificial Intelligence: A New Paradigm in Obstetrics and Gynecology Research and Clinical Practice. Cureus. 2020;12(2):e7124. [
DOI:10.7759/cureus.7124]
84. Isiksacan Z, D'Alessandro A, Wolf SM, McKenna DH, Tessier SN, Kucukal E, et al. Assessment of stored red blood cells through lab-on-a-chip technologies for precision transfusion medicine. Proc Natl Acad Sci U S A. 2023;120(32):e2115616120. [
DOI:10.1073/pnas.2115616120] [
PMID] [
]
85. Jakubczyk P, Paja W, Pancerz K, Cebulski J, Depciuch J, Uzun Ö, et al. Determination of idiopathic female infertility from infrared spectra of follicle fluid combined with gonadotrophin levels, multivariate analysis and machine learning methods. Photodiagnosis Photodyn Ther. 2022;38:102883. [
DOI:10.1016/j.pdpdt.2022.102883] [
PMID]
86. Jiang VS, Bormann CL. Noninvasive genetic screening: current advances in artificial intelligence for embryo ploidy prediction. Fertil Steril. 2023;120(2):228-34. [
DOI:10.1016/j.fertnstert.2023.06.025] [
PMID]
87. Jiang VS, Bormann CL. Artificial intelligence in the in vitro fertilization laboratory: a review of advancements over the last decade. Fertil Steril. 2023;120(1):17-23. [
DOI:10.1016/j.fertnstert.2023.05.149] [
PMID]
88. Jiang VS, Kartik D, Thirumalaraju P, Kandula H, Kanakasabapathy MK, Souter I, et al. Advancements in the future of automating micromanipulation techniques in the IVF laboratory using deep convolutional neural networks. J Assist Reprod Genet. 2023;40(2):251-7. [
DOI:10.1007/s10815-022-02685-9] [
PMID] [
]
89. Jin H, Shen X, Song W, Liu Y, Qi L, Zhang F. The Development of Nomograms to Predict Blastulation Rate Following Cycles of In Vitro Fertilization in Patients With Tubal Factor Infertility, Polycystic Ovary Syndrome, or Endometriosis. Front Endocrinol (Lausanne). 2021;12:751373. [
DOI:10.3389/fendo.2021.751373] [
PMID] [
]
90. Johansen MN, Parner ET, Kragh MF, Kato K, Ueno S, Palm S, et al. Comparing performance between clinics of an embryo evaluation algorithm based on time-lapse images and machine learning. J Assist Reprod Genet. 2023;40(9):2129-37. [
DOI:10.1007/s10815-023-02871-3] [
PMID] [
]
91. Joshi AS, Alegria AD, Auch B, Khosla K, Mendana JB, Liu K, et al. Multiscale, multi-perspective imaging assisted robotic microinjection of 3D biological structures. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:4844-50. [
DOI:10.1109/EMBC46164.2021.9630858] [
PMID] [
]
92. Kandel ME, Rubessa M, He YR, Schreiber S, Meyers S, Matter Naves L, et al. Reproductive outcomes predicted by phase imaging with computational specificity of spermatozoon ultrastructure. Proc Natl Acad Sci U S A. 2020;117(31):18302-9. [
DOI:10.1073/pnas.2001754117] [
PMID] [
]
93. Khalife D, Abu-Musa A, Khalil A, Ghazeeri G. Towards the selection of embryos with the greatest implantation potential. J Obstet Gynaecol. 2021;41(7):1010-5. [
DOI:10.1080/01443615.2020.1835842] [
PMID]
94. Khan HL, Bhatti S, Abbas S, Kaloglu C, Isa AM, Younas H, et al. Extracellular microRNAs: key players to explore the outcomes of in vitro fertilization. Reprod Biol Endocrinol. 2021;19(1):72. [
DOI:10.1186/s12958-021-00754-9] [
PMID] [
]
95. Khattar H, Goel R, Kumar P. Artificial Intelligence in Gynaecological Malignancies: Perspectives of a Clinical Oncologist. Cureus. 2023;15(9):e45660. [
DOI:10.7759/cureus.45660]
96. Kim HM, Ko T, Kang H, Choi S, Park JH, Chung MK, et al. Improved prediction of clinical pregnancy using artificial intelligence with enhanced inner cell mass and trophectoderm images. Sci Rep. 2024;14(1):3240. [
DOI:10.1038/s41598-024-52241-x] [
PMID] [
]
97. Kim J, Lee J, Jun JH. Non-invasive evaluation of embryo quality for the selection of transferable embryos in human in vitro fertilization-embryo transfer. Clin Exp Reprod Med. 2022;49(4):225-38. [
DOI:10.5653/cerm.2022.05575] [
PMID] [
]
98. Kragh MF, Karstoft H. Embryo selection with artificial intelligence: how to evaluate and compare methods? J Assist Reprod Genet. 2021;38(7):1675-89. [
DOI:10.1007/s10815-021-02254-6] [
PMID] [
]
99. Kresch E, Efimenko I, Gonzalez D, Rizk PJ, Ramasamy R. Novel methods to enhance surgical sperm retrieval: a systematic review. Arab J Urol. 2021;19(3):227-37. [
DOI:10.1080/2090598X.2021.1926752] [
PMID] [
]
100. Kromp F, Wagner R, Balaban B, Cottin V, Cuevas-Saiz I, Schachner C, et al. An annotated human blastocyst dataset to benchmark deep learning architectures for in vitro fertilization. Sci Data. 2023;10(1):271. [
DOI:10.1038/s41597-023-02182-3] [
PMID] [
]
101. Kulus M, Kranc W, Wojtanowicz-Markiewicz K, Celichowski P, Światły-Błaszkiewicz A, Matuszewska E, et al. New Gene Markers Expressed in Porcine Oviductal Epithelial Cells Cultured Primary In Vitro Are Involved in Ontological Groups Representing Physiological Processes of Porcine Oocytes. Int J Mol Sci. 2021;22(4). [
DOI:10.3390/ijms22042082] [
PMID] [
]
102. Kumar RS, Sharma S, Halder A, Gupta V. Deep Learning-Based Robust Automated System for Predicting Human Sperm DNA Fragmentation Index. J Hum Reprod Sci. 2023;16(1):16-21. [
DOI:10.4103/jhrs.jhrs_4_23] [
PMID] [
]
103. Lee CI, Su YR, Chen CH, Chang TA, Kuo EE, Zheng WL, et al. End-to-end deep learning for recognition of ploidy status using time-lapse videos. J Assist Reprod Genet. 2021;38(7):1655-63. [
DOI:10.1007/s10815-021-02228-8] [
PMID] [
]
104. Lee R, Witherspoon L, Robinson M, Lee JH, Duffy SP, Flannigan R, Ma H. Automated rare sperm identification from low-magnification microscopy images of dissociated microsurgical testicular sperm extraction samples using deep learning. Fertil Steril. 2022;118(1):90-9. [
DOI:10.1016/j.fertnstert.2022.03.011] [
PMID]
105. Letterie G. Three ways of knowing: the integration of clinical expertise, evidence-based medicine, and artificial intelligence in assisted reproductive technologies. J Assist Reprod Genet. 2021;38(7):1617-25. [
DOI:10.1007/s10815-021-02159-4] [
PMID] [
]
106. Letterie G. Artificial intelligence and assisted reproductive technologies: 2023. Ready for prime time? Or not. Fertil Steril. 2023;120(1):32-7. [
DOI:10.1016/j.fertnstert.2023.05.146] [
PMID]
107. Letterie G, Mac Donald A. Artificial intelligence in in vitro fertilization: a computer decision support system for day-to-day management of ovarian stimulation during in vitro fertilization. Fertil Steril. 2020;114(5):1026-31. [
DOI:10.1016/j.fertnstert.2020.06.006] [
PMID]
108. Letterie G, MacDonald A, Shi Z. An artificial intelligence platform to optimize workflow during ovarian stimulation and IVF: process improvement and outcome-based predictions. Reprod Biomed Online. 2022;44(2):254-60. [
DOI:10.1016/j.rbmo.2021.10.006] [
PMID]
109. Li J, Lu M, Zhang P, Hou E, Li T, Liu X, et al. Aberrant spliceosome expression and altered alternative splicing events correlate with maturation deficiency in human oocytes. Cell Cycle. 2020;19(17):2182-94. [
DOI:10.1080/15384101.2020.1799295] [
PMID] [
]
110. Li L, Cui X, Yang J, Wu X, Zhao G. Using feature optimization and LightGBM algorithm to predict the clinical pregnancy outcomes after in vitro fertilization. Front Endocrinol (Lausanne). 2023;14:1305473. [
DOI:10.3389/fendo.2023.1305473] [
PMID] [
]
111. Liang X, Liang J, Zeng F, Lin Y, Li Y, Cai K, et al. Evaluation of oocyte maturity using artificial intelligence quantification of follicle volume biomarker by three-dimensional ultrasound. Reprod Biomed Online. 2022;45(6):1197-206. [
DOI:10.1016/j.rbmo.2022.07.012] [
PMID]
112. Liao S, Pan W, Dai WQ, Jin L, Huang G, Wang R, et al. Development of a Dynamic Diagnosis Grading System for Infertility Using Machine Learning. JAMA Netw Open. 2020;3(11):e2023654. [
DOI:10.1001/jamanetworkopen.2020.23654] [
PMID] [
]