دوره 8، شماره 3 - ( 1402 )                   دوره 8 شماره 3 صفحات 179-167 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saremi A, Abbasi B, Karimi-MansoorAbad E, Ashourian Y. Artificial Intelligence's Impact on Cancer Treatment: Advancements and Future Directions. SJMR 2023; 8 (3) : 4
URL: http://saremjrm.com/article-1-308-fa.html
صارمی ابوطالب، عباسی بهاره، کریمی منصورآباد الهام، عاشوریان یاسین. تاثیر هوش مصنوعی بر درمان سرطان: پیشرفت‌ها و مسیرهای آینده. مجله تحقيقات پزشكي صارم. 1402; 8 (3) :167-179

URL: http://saremjrm.com/article-1-308-fa.html


1- مرکز تحقیقات زنان، زایمان و ناباروری صارم، بیمارستان فوق تخصصی صارم، دانشگاه علوم پزشکی ایران (IUMS)، تهران، ایران. و مرکز تحقیقات سلولی- مولکولی و سلول‌های بنیادی صارم (SCRC)، بیمارستان فوق تخصصی صارم، تهران، ایران.
2- دپارتمان ژنتیک پزشکی، موسسه ملی مهندسی ژنتیک و بیوتکنولوژی (NIGEB)، تهران، ایران.
چکیده:   (2885 مشاهده)
این مرور داستانی تاثیر تحول‌آفرین هوش مصنوعی (AI) بر درمان سرطان را بررسی می‌کند که شامل:  تشخیص زودهنگام، تصویربرداری پزشکی، برنامه‌های درمانی شخصی، رادیوتراپی، جراحی، سیستم‌های پشتیبانی تصمیم‌گیری بالینی و جهت‌گیری‌های آینده است. هوش مصنوعی با افزایش دقت و دسترسی به تشخیص از طریق تصویربرداری پزشکی، تجزیه و تحلیل هیستوپاتولوژیک و تفسیر داده‌های ژنتیکی، تشخیص زودهنگام سرطان را متحول کرده است. در تصویربرداری پزشکی، هوش مصنوعی دقت تشخیص را بهبود می‌بخشد و شناسایی ناهنجاری‌ها را تسریع می‌بخشد. طرح‌های درمانی شخصی‌شده، هدایت‌شده با بینش‌های مبتنی بر هوش مصنوعی، درمان را بهینه می‌کنند و در عین حال عوارض جانبی را به حداقل می‌رسانند. هوش مصنوعی کشف دارو را تسریع، رادیوتراپی را تقویت و مداخلات جراحی دقیق را امکان‌پذیر می‌کند. سیستم‌های پشتیبانی تصمیم‌گیری بالینی به تفسیر داده‌ها و برنامه‌ریزی درمان کمک می‌کند. آینده نوید تجزیه و تحلیل پیش‌بینی کننده، توسعه دارویی مبتنی بر هوش مصنوعی، جراحی روباتیک و ‌EHRهای یکپارچه را می‌دهد. ملاحظات اخلاقی شامل: حریم خصوصی داده‌ها و سوگیری الگوریتمی است.
شماره‌ی مقاله: 4
متن کامل [PDF 915 kb]   (872 دریافت)    
نوع مقاله: مروری سیستماتيک | موضوع مقاله: بهداشت و ايمني
دریافت: 1402/8/24 | پذیرش: 1402/9/30 | انتشار: 1403/5/13

فهرست منابع
1. Yazdian Anari P, Zahergivar A, Gopal N, Chaurasia A, Lay N, Ball MW, et al. Kidney scoring surveillance: predictive machine learning models for clear cell renal cell carcinoma growth using MRI. Abdom Radiol (NY). 2024.
3. Ko J, Hyung S, Cheong S, Chung Y, Li Jeon N. Revealing the clinical potential of high-resolution organoids. Adv Drug Deliv Rev. 2024;207:115202.
5. Li J, Xiang Y, Han J, Gao Y, Wang R, Dong Z, et al. Retinopathy as a predictive indicator for significant hepatic fibrosis according to T2DM status: A cross-sectional study based on the National Health and Nutrition Examination Survey Data. Ann Hepatol. 2024:101478.
7. Takahashi N, Takano Y, Takeshita K, Toya N, Yano F, Eto K. Proctoring System Enables Safe Induction of Robotic Gastrectomy: Short-term Outcomes of the First 10 Cases. Anticancer Res. 2024;44(2):823-8.
9. Bhattacharya A, Pal M. Prediction on nature of cancer by fuzzy graphoidal covering number using artificial neural network. Artif Intell Med. 2024;148:102783.
11. Jin W, Fatehi M, Guo R, Hamarneh G. Evaluating the clinical utility of artificial intelligence assistance and its explanation on the glioma grading task. Artif Intell Med. 2024;148:102751.
13. Liu H, Huang J, Li Q, Guan X, Tseng M. A deep convolutional neural network for the automatic segmentation of glioblastoma brain tumor: Joint spatial pyramid module and attention mechanism network. Artif Intell Med. 2024;148:102776.
15. Matin HN, Setayeshi S. A computational tumor growth model experience based on molecular dynamics point of view using deep cellular automata. Artif Intell Med. 2024;148:102752.
17. Nopour R. Screening ovarian cancer by using risk factors: machine learning assists. Biomed Eng Online. 2024;23(1):18.
19. Fein JA, Patel SS. Under AI's lens: spotting mutations visually. Blood Adv. 2024;8(3):827-8.
21. Unger M, Kather JN. A systematic analysis of deep learning in genomics and histopathology for precision oncology. BMC Med Genomics. 2024;17(1):48.
23. Ren J, Yang G, Song Y, Zhang C, Yuan Y. Machine learning-based MRI radiomics for assessing the level of tumor infiltrating lymphocytes in oral tongue squamous cell carcinoma: a pilot study. BMC Med Imaging. 2024;24(1):33.
25. Warin K, Suebnukarn S. Deep learning in oral cancer- a systematic review. BMC Oral Health. 2024;24(1):212.
27. Zhao Q, Wang M, Chen M. Tumor polo-like kinase 4 protein expression reflects lymphovascular invasion, higher Federation of Gynecology and Obstetrics stage, and shortened survival in endometrial cancer patients who undergo surgical resection. BMC Womens Health. 2024;24(1):101.
29. Gurmessa DK, Jimma W. Explainable machine learning for breast cancer diagnosis from mammography and ultrasound images: a systematic review. BMJ Health Care Inform. 2024;31(1).
31. Benzaquen J, Hofman P, Lopez S, Leroy S, Rouis N, Padovani B, et al. Integrating artificial intelligence into lung cancer screening: a randomised controlled trial protocol. BMJ Open. 2024;14(2):e074680.
33. Viberg Johansson J, Dembrower K, Strand F, Grauman Å. Women's perceptions and attitudes towards the use of AI in mammography in Sweden: a qualitative interview study. BMJ Open. 2024;14(2):e084014.
35. Usuzaki T, Takahashi K, Inamori R. Letter to the editor on "Automated classification of fat-infiltrated axillary lymph nodes on screening mammograms". Br J Radiol. 2024;97(1154):479-80.
37. Santeramo R, Damiani C, Wei J, Montana G, Brentnall AR. Are better AI algorithms for breast cancer detection also better at predicting risk? A paired case-control study. Breast Cancer Res. 2024;26(1):25.
39. Chuwdhury GS, Guo Y, Chiang CL, Lam KO, Kam NW, Liu Z, Dai W. ImmuneMirror: A machine learning-based integrative pipeline and web server for neoantigen prediction. Brief Bioinform. 2024;25(2).
41. Fang M, Fang J, Luo S, Liu K, Yu Q, Yang J, et al. eccDNA-pipe: an integrated pipeline for identification, analysis and visualization of extrachromosomal circular DNA from high-throughput sequencing data. Brief Bioinform. 2024;25(2).
43. Guo LX, Wang L, You ZH, Yu CQ, Hu ML, Zhao BW, Li Y. Likelihood-based feature representation learning combined with neighborhood information for predicting circRNA-miRNA associations. Brief Bioinform. 2024;25(2).
45. Guo Y, Hu H, Chen W, Yin H, Wu J, Hsieh CY, et al. SynergyX: a multi-modality mutual attention network for interpretable drug synergy prediction. Brief Bioinform. 2024;25(2).
47. Wei Q, Islam MT, Zhou Y, Xing L. Self-supervised deep learning of gene-gene interactions for improved gene expression recovery. Brief Bioinform. 2024;25(2).
49. Guerra A, Orton MR, Wang H, Konidari M, Maes K, Papanikolaou NK, Koh DM. Clinical application of machine learning models in patients with prostate cancer before prostatectomy. Cancer Imaging. 2024;24(1):24.
51. Hu C, Qiao X, Hu C, Cao C, Wang X, Bao J. The practical clinical role of machine learning models with different algorithms in predicting prostate cancer local recurrence after radical prostatectomy. Cancer Imaging. 2024;24(1):23.
53. Kang Z, Zhao YX, Qiu RSQ, Chen DN, Zheng QS, Xue XY, et al. Identification macrophage signatures in prostate cancer by single-cell sequencing and machine learning. Cancer Immunol Immunother. 2024;73(3):41.
55. Yoshikawa AL, Omura T, Takahashi-Kanemitsu A, Susaki EA. Blueprints from plane to space: outlook of next-generation three-dimensional histopathology. Cancer Sci. 2024.
57. Foltz EA, Witkowski A, Becker AL, Latour E, Lim JY, Hamilton A, Ludzik J. Artificial Intelligence Applied to Non-Invasive Imaging Modalities in Identification of Nonmelanoma Skin Cancer: A Systematic Review. Cancers (Basel). 2024;16(3).
59. Bao X, Li Q, Chen D, Dai X, Liu C, Tian W, et al. A multiomics analysis-assisted deep learning model identifies a macrophage-oriented module as a potential therapeutic target in colorectal cancer. Cell Rep Med. 2024:101399.
61. Karas S, Mathijssen RHJ, van Schaik RHN, Forrest A, Wiltshire T, Bies RR, Innocenti F. Model-Based Prediction of Irinotecan-Induced Grade 4 Neutropenia in Cancer Patients: Influence of Incorporating Germline Genetic Factors in the Model. Clin Pharmacol Ther. 2024.
63. Maniaci A, Saibene AM, Calvo-Henriquez C, Vaira L, Radulesco T, Michel J, et al. Is generative pre-trained transformer artificial intelligence (Chat-GPT) a reliable tool for guidelines synthesis? A preliminary evaluation for biologic CRSwNP therapy. Eur Arch Otorhinolaryngol. 2024.
65. Echecopar C, Abad I, Galán-Gómez V, Mozo Del Castillo Y, Sisinni L, Bueno D, et al. An artificial intelligence-driven predictive model for pediatric allogeneic hematopoietic stem cell transplantation using clinical variables. Eur J Haematol. 2024.
67. Yousefirizi F, Klyuzhin IS, O JH, Harsini S, Tie X, Shiri I, et al. TMTV-Net: fully automated total metabolic tumor volume segmentation in lymphoma PET/CT images - a multi-center generalizability analysis. Eur J Nucl Med Mol Imaging. 2024.
69. O'Connor S, Vercell A, Wong D, Yorke J, Fallatah FA, Cave L, Anny Chen LY. The application and use of artificial intelligence in cancer nursing: A systematic review. Eur J Oncol Nurs. 2024;68:102510.
71. Levin G, Matanes E, Brezinov Y, Ferenczy A, Pelmus M, Brodeur MN, et al. Machine learning for prediction of concurrent endometrial carcinoma in patients diagnosed with endometrial intraepithelial neoplasia. Eur J Surg Oncol. 2024;50(3):108006.
73. Padhani AR, Godtman RA, Schoots IG. Key learning on the promise and limitations of MRI in prostate cancer screening. Eur Radiol. 2024.
75. Bereska JI, Janssen BV, Nio CY, Kop MPM, Kazemier G, Busch OR, et al. Artificial intelligence for assessment of vascular involvement and tumor resectability on CT in patients with pancreatic cancer. Eur Radiol Exp. 2024;8(1):18.
77. Gitto S, Serpi F, Albano D, Risoleo G, Fusco S, Messina C, Sconfienza LM. AI applications in musculoskeletal imaging: a narrative review. Eur Radiol Exp. 2024;8(1):22.
79. Tayebi Arasteh S, Misera L, Kather JN, Truhn D, Nebelung S. Enhancing diagnostic deep learning via self-supervised pretraining on large-scale, unlabeled non-medical images. Eur Radiol Exp. 2024;8(1):10.
81. Peng Y, Wang Y, Wen Z, Xiang H, Guo L, Su L, et al. Deep learning and machine learning predictive models for neurological function after interventional embolization of intracranial aneurysms. Front Neurol. 2024;15:1321923.
83. Liu R, Gong G, Meng K, Du S, Yin Y. Hippocampal sparing in whole-brain radiotherapy for brain metastases: controversy, technology and the future. Front Oncol. 2024;14:1342669.
85. Chen C, Xie Z, Ni Y, He Y. Screening immune-related blood biomarkers for DKD-related HCC using machine learning. Front Immunol. 2024;15:1339373.
87. Zhang B, Zhang W, Yao H, Qiao J, Zhang H, Song Y. A study on the improvement in the ability of endoscopists to diagnose gastric neoplasms using an artificial intelligence system. Front Med (Lausanne). 2024;11:1323516.
89. Gencer A. Bibliometric analysis and research trends of artificial intelligence in lung cancer. Heliyon. 2024;10(2):e24665.
91. Ojewunmi OO, Adeyemo TA, Oyetunji AI, Inyang B, Akinrindoye A, Mkumbe BS, et al. The genetic dissection of fetal haemoglobin persistence in sickle cell disease in Nigeria. Hum Mol Genet. 2024.
93. Tang L, Zhang W, Zhang Y, Deng W, Zhao M. Machine Learning-Based Integrated Analysis of PANoptosis Patterns in Acute Myeloid Leukemia Reveals a Signature Predicting Survival and Immunotherapy. Int J Clin Pract. 2024;2024:5113990.
95. Mevik K, Zebene Woldaregay A, Ringdal A, Øyvind Mikalsen K, Xu Y. Exploring surgical infection prediction: A comparative study of established risk indexes and a novel model. Int J Med Inform. 2024;184:105370.
97. Behara K, Bhero E, Agee JT. Grid-Based Structural and Dimensional Skin Cancer Classification with Self-Featured Optimized Explainable Deep Convolutional Neural Networks. Int J Mol Sci. 2024;25(3).
99. Yonezawa S, Haruki T, Koizumi K, Taketani A, Oshima Y, Oku M, et al. Establishing Monoclonal Gammopathy of Undetermined Significance as an Independent Pre-Disease State of Multiple Myeloma Using Raman Spectroscopy, Dynamical Network Biomarker Theory, and Energy Landscape Analysis. Int J Mol Sci. 2024;25(3).
101. Zhang YF, Zhou C, Guo S, Wang C, Yang J, Yang ZJ, et al. Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer. J Cancer Res Clin Oncol. 2024;150(2):78.
103. Qureshi MA. Integration of Next Generation Sequencing, Artificial Intelligence and Machine Learning in Cancer Diagnostics: A Major Leap Forward. J Coll Physicians Surg Pak. 2024;34(2):127-8.
105. Munir MM, Endo Y, Ejaz A, Dillhoff M, Cloyd JM, Pawlik TM. Online artificial intelligence platforms and their applicability to gastrointestinal surgical operations. J Gastrointest Surg. 2024;28(1):64-9.
107. Lin YH, Lin CT, Chang YH, Lin YY, Chen JJ, Huang CR, et al. Development and Validation of a 3D Resnet Model for Prediction of Lymph Node Metastasis in Head and Neck Cancer Patients. J Imaging Inform Med. 2024.
109. Salehi MA, Mohammadi S, Harandi H, Zakavi SS, Jahanshahi A, Shahrabi Farahani M, Wu JS. Diagnostic Performance of Artificial Intelligence in Detection of Primary Malignant Bone Tumors: a Meta-Analysis. J Imaging Inform Med. 2024.
111. Shen J, Choi YL, Lee T, Kim H, Chae YK, Dulken BW, et al. Inflamed immune phenotype predicts favorable clinical outcomes of immune checkpoint inhibitor therapy across multiple cancer types. J Immunother Cancer. 2024;12(2).
113. Takeshita Y, Onozawa S, Katase S, Shirakawa Y, Yamashita K, Shudo J, et al. Evaluation of an artificial intelligence U-net algorithm for pulmonary nodule tracking on chest computed tomography images. J Int Med Res. 2024;52(2):3000605241230033.
115. Haj-Hosseini N, Lindblad J, Hasséus B, Kumar VV, Subramaniam N, Hirsch JM. Early Detection of Oral Potentially Malignant Disorders: A Review on Prospective Screening Methods with Regard to Global Challenges. J Maxillofac Oral Surg. 2024;23(1):23-32.
117. Li W, Zhang Y, Zhou X, Quan X, Chen B, Hou X, et al. Ensemble learning-assisted prediction of prolonged hospital length of stay after spine correction surgery: a multi-center cohort study. J Orthop Surg Res. 2024;19(1):112.
119. Read MD, Torikashvili J, Janjua H, Grimsley EA, Kuo PC, Docimo S. The downtrending cost of robotic bariatric surgery: a cost analysis of 47,788 bariatric patients. J Robot Surg. 2024;18(1):63.
121. Feng X, Shu W, Li M, Li J, Xu J, He M. Pathogenomics for accurate diagnosis, treatment, prognosis of oncology: a cutting edge overview. J Transl Med. 2024;22(1):131.
123. Gill IS, Desai MM, Cacciamani GE, Khandekar A, Parekh DJ. Robotic Radical Cystectomy for Bladder Cancer: The Way Forward. J Urol. 2024;211(3):476-80.
125. Haggenmüller S, Schmitt M, Krieghoff-Henning E, Hekler A, Maron RC, Wies C, et al. Federated Learning for Decentralized Artificial Intelligence in Melanoma Diagnostics. JAMA Dermatol. 2024.
127. Pigat L, Geisler BP, Sheikhalishahi S, Sander J, Kaspar M, Schmutz M, et al. Predicting Hypoxia Using Machine Learning: Systematic Review. JMIR Med Inform. 2024;12:e50642.
129. Ma Y, Achiche S, Pomey MP, Paquette J, Adjtoutah N, Vicente S, et al. Adapting and Evaluating an AI-Based Chatbot Through Patient and Stakeholder Engagement to Provide Information for Different Health Conditions: Master Protocol for an Adaptive Platform Trial (the MARVIN Chatbots Study). JMIR Res Protoc. 2024;13:e54668.
131. Pan X, Wang P, Jia S, Wang Y, Liu Y, Zhang Y, Jiang C. Multi-contrast learning-guided lightweight few-shot learning scheme for predicting breast cancer molecular subtypes. Med Biol Eng Comput. 2024.
133. Mohammad EB, Ahmad M. A systematic evaluation of big data-driven colorectal cancer studies. Med Glas (Zenica). 2024;21(1):63-77.
135. Zhang L, Liu Z, Zhang L, Wu Z, Yu X, Holmes J, et al. [Not Available]. Med Phys. 2024.
136. Liu C, Liu Z, Holmes J, Zhang L, Zhang L, Ding Y, et al. Artificial general intelligence for radiation oncology. Meta Radiol. 2023;1(3).
138. Malara N, Coluccio ML, Grillo F, Ferrazzo T, Garo NC, Donato G, et al. Multicancer screening test based on the detection of circulating non haematological proliferating atypical cells. Mol Cancer. 2024;23(1):32.
140. Su J, Yang L, Sun Z, Zhan X. Personalized drug therapy: innovative concept guided with proteoformics. Mol Cell Proteomics. 2024:100737.
142. Spratt DE, Tang S, Sun Y, Huang HC, Chen E, Mohamad O, et al. Artificial Intelligence Predictive Model for Hormone Therapy Use in Prostate Cancer. NEJM Evid. 2023;2(8):EVIDoa2300023.
144. Iannantuono GM, Bracken-Clarke D, Karzai F, Choo-Wosoba H, Gulley JL, Floudas CS. Comparison of Large Language Models in Answering Immuno-Oncology Questions: A Cross-Sectional Study. Oncologist. 2024.
146. Shatalov PA, Falaleeva NA, Bykova EA, Korostin DO, Belova VA, Zabolotneva AA, et al. Genetic and therapeutic landscapes in cohort of pancreatic adenocarcinomas: next-generation sequencing and machine learning for full tumor exome analysis. Oncotarget. 2024;15:91-103.
148. Rietjens JAC, Griffioen I, Sierra-Pérez J, Sroczynski G, Siebert U, Buyx A, et al. Improving shared decision-making about cancer treatment through design-based data-driven decision-support tools and redesigning care paths: an overview of the 4D PICTURE project. Palliat Care Soc Pract. 2024;18:26323524231225249.
150. Khongwirotphan S, Oonsiri S, Kitpanit S, Prayongrat A, Kannarunimit D, Chakkabat C, et al. Multimodality radiomics for tumor prognosis in nasopharyngeal carcinoma. PLoS One. 2024;19(2):e0298111.
152. Svendsen SMS, Pedersen DC, Jensen BW, Aarestrup J, Mellemkjær L, Bjerregaard LG, Baker JL. Early life body size and puberty markers as predictors of breast cancer risk later in life: A neural network analysis. PLoS One. 2024;19(2):e0296835.
154. Tegtmeier RC, Kutyreff CJ, Smetanick JL, Hobbis D, Laughlin BS, Toesca DAS, et al. Custom-Trained Deep Learning-Based Auto-Segmentation for Male Pelvic Iterative CBCT on C-Arm Linear Accelerators. Pract Radiat Oncol. 2024.
156. Xia W, Li D, He W, Pickhardt PJ, Jian J, Zhang R, et al. Multicenter Evaluation of a Weakly Supervised Deep Learning Model for Lymph Node Diagnosis in Rectal Cancer on MRI. Radiol Artif Intell. 2024:e230152.
158. Granata V, Fusco R, Coluccino S, Russo C, Grassi F, Tortora F, et al. Preliminary data on artificial intelligence tool in magnetic resonance imaging assessment of degenerative pathologies of lumbar spine. Radiol Med. 2024.
160. Auer TA, Müller L, Schulze D, Anhamm M, Bettinger D, Steinle V, et al. CT-guided High-Dose-Rate Brachytherapy versus Transarterial Chemoembolization in Patients with Unresectable Hepatocellular Carcinoma. Radiology. 2024;310(2):e232044.
162. Wamelink I, Azizova A, Booth TC, Mutsaerts H, Ogunleye A, Mankad K, et al. Brain Tumor Imaging without Gadolinium-based Contrast Agents: Feasible or Fantasy? Radiology. 2024;310(2):e230793.
164. Whybra P, Zwanenburg A, Andrearczyk V, Schaer R, Apte AP, Ayotte A, et al. The Image Biomarker Standardization Initiative: Standardized Convolutional Filters for Reproducible Radiomics and Enhanced Clinical Insights. Radiology. 2024;310(2):e231319.
166. Chang CL, Lin KC, Chen WM, Shia BC, Wu SY. Correspondence: Comprehensive insights on the underlying potential and advantage of proton therapy over intensity-modulated photon radiation therapy as highlighted in a wide real world data analysis. Radiother Oncol. 2024:110146.
168. Braunschweig R, Kildal D, Janka R. Artificial intelligence (AI) in diagnostic imaging. Rofo. 2024.
170. Qian ZY, Pan YQ, Li XX, Chen YX, Wu HX, Liu ZX, et al. Modulator of TMB-associated immune infiltration (MOTIF) predicts immunotherapy response and guides combination therapy. Sci Bull (Beijing). 2024.
172. Wu Y, Liu X, Huang Y, Zhou T, Zhang F. An open relaxation-diffusion MRI dataset in neurosurgical studies. Sci Data. 2024;11(1):177.
174. El Badisy I, Ben Brahim Z, Khalis M, Elansari S, ElHitmi Y, Abbass F, et al. Risk factors affecting patients survival with colorectal cancer in Morocco: survival analysis using an interpretable machine learning approach. Sci Rep. 2024;14(1):3556.
176. Monaco S, Bussola N, Buttò S, Sona D, Giobergia F, Jurman G, et al. AI models for automated segmentation of engineered polycystic kidney tubules. Sci Rep. 2024;14(1):2847.
178. Saidani O, Umer M, Alturki N, Alshardan A, Kiran M, Alsubai S, et al. White blood cells classification using multi-fold pre-processing and optimized CNN model. Sci Rep. 2024;14(1):3570.
180. Wang X, Sun H, Dong Y, Huang J, Bai L, Tang Z, et al. Development and validation of a cuproptosis-related prognostic model for acute myeloid leukemia patients using machine learning with stacking. Sci Rep. 2024;14(1):2802.
182. Li N, Fei P, Tous C, Rezaei Adariani M, Hautot ML, Ouedraogo I, et al. Human-scale navigation of magnetic microrobots in hepatic arteries. Sci Robot. 2024;9(87):eadh8702.
184. Choe YH, Lee S, Lim Y, Kim SH. Machine learning-derived model for predicting poor post-treatment quality of life in Korean cancer survivors. Support Care Cancer. 2024;32(3):143.
186. Lin WC, Chen WM, Shia BC, Wu SY. Prognostic factors for survival in unresectable stage III EGFR mutation-positive lung adenocarcinoma: impact of pre-CCRT PET-CT. Thorax. 2024.
188. Liao XY, Bao YG, Liu ZH, Yang L, Qiu S, Liu LR, et al. [Functional outcomes of robot-assisted radical prostatectomy with preservation of pelvic stabilized structure and early elevated retrograde liberation of neurovascular bundle]. Zhonghua Wai Ke Za Zhi. 2024;62(2):128-34.
189. Sarria GR, Kugel F, Roehner F, Layer J, Dejonckheere C, Scafa D, et al. Artificial Intelligence-Based Autosegmentation: Advantages in Delineation, Absorbed Dose-Distribution, and Logistics. Adv Radiat Oncol. 2024;9(3):101394.
191. Mohammadi G, Azizmohammad Looha M, Pourhoseingholi MA, Rezaei Tavirani M, Sohrabi S, Zareie Shab Khaneh A, et al. Classification and Diagnostic Prediction of Colorectal Cancer Mortality Based on Machine Learning Algorithms: A Multicenter National Study. Asian Pac J Cancer Prev. 2024;25(1):333-42.
193. Zhang J, Guo H, Wang L, Zheng M, Kong S, Wu H, et al. Cediranib enhances the transcription of MHC-I by upregulating IRF-1. Biochem Pharmacol. 2024;221:116036.
195. Ille AM, Markosian C, Burley SK, Mathews MB, Pasqualini R, Arap W. Generative artificial intelligence performs rudimentary structural biology modelling. bioRxiv. 2024.
197. Mukherjee S, Mukherjee A, Bytesnikova Z, Ashrafi AM, Richtera L, Adam V. 2D graphene-based advanced nanoarchitectonics for electrochemical biosensors: Applications in cancer biomarker detection. Biosens Bioelectron. 2024;250:116050.
199. Niu M, Wang C, Zhang Z, Zou Q. A computational model of circRNA-associated diseases based on a graph neural network: prediction and case studies for follow-up experimental validation. BMC Biol. 2024;22(1):24.
201. Li F, Wang B, Li H, Kong L, Zhu B. G6PD and machine learning algorithms as prognostic and diagnostic indicators of liver hepatocellular carcinoma. BMC Cancer. 2024;24(1):157.
203. Yu Y, Zu L, Jiang J, Wu Y, Wang Y, Xu M, Liu Q. Structure-aware deep model for MHC-II peptide binding affinity prediction. BMC Genomics. 2024;25(1):127.
205. Kumar S, Kumar H, Kumar G, Singh SP, Bijalwan A, Diwakar M. A methodical exploration of imaging modalities from dataset to detection through machine learning paradigms in prominent lung disease diagnosis: a review. BMC Med Imaging. 2024;24(1):30.
207. Lee SJ, Oh HJ, Son YD, Kim JH, Kwon IJ, Kim B, et al. Enhancing deep learning classification performance of tongue lesions in imbalanced data: mosaic-based soft labeling with curriculum learning. BMC Oral Health. 2024;24(1):161.
209. Sigg S, Lehner F, Keller EX, Saba K, Moch H, Sulser T, et al. Outcomes of robot-assisted laparoscopic extended pelvic lymph node dissection for prostate Cancer. BMC Urol. 2024;24(1):24.
211. Panagiotopoulou IG, Przedlacka A, Piozzi GN, Mills GA, Harper M, Khan JS. Robotic beyond total mesorectal excision (TME) for locally advanced or recurrent rectal cancer: a systematic review protocol. BMJ Open. 2024;14(1):e080043.
213. Schöler J, Alavanja M, de Lange T, Yamamoto S, Hedenström P, Varkey J. Impact of AI-aided colonoscopy in clinical practice: a prospective randomised controlled trial. BMJ Open Gastroenterol. 2024;11(1).
215. Ichikawa H, Yakushijin K, Kurata K, Tsuji T, Takemoto N, Joyce M, et al. Utility of the refined EBMT diagnostic and severity criteria 2023 for sinusoidal obstruction syndrome/veno-occlusive disease. Bone Marrow Transplant. 2024.
217. Dickhoff LRM, Scholman RJ, Barten DLJ, Kerkhof EM, Roorda JJ, Velema LA, et al. Keeping your best options open with AI-based treatment planning in prostate and cervix brachytherapy. Brachytherapy. 2024.
219. Han X, Guo Y, Ye H, Chen Z, Hu Q, Wei X, et al. Development of a machine learning-based radiomics signature for estimating breast cancer TME phenotypes and predicting anti-PD-1/PD-L1 immunotherapy response. Breast Cancer Res. 2024;26(1):18.
221. Sharma A, Weitz P, Wang Y, Liu B, Vallon-Christersson J, Hartman J, Rantalainen M. Development and prognostic validation of a three-level NHG-like deep learning-based model for histological grading of breast cancer. Breast Cancer Res. 2024;26(1):17.
223. Zhang HW, Huang DL, Wang YR, Zhong HS, Pang HW. CT radiomics based on different machine learning models for classifying gross tumor volume and normal liver tissue in hepatocellular carcinoma. Cancer Imaging. 2024;24(1):20.
225. Zhao Y, Dimou A, Fogarty ZC, Jiang J, Liu H, Wong WB, Wang C. Real-world Trends, Rural-urban Differences, and Socioeconomic Disparities in Utilization of Narrow versus Broad Next-generation Sequencing Panels. Cancer Res Commun. 2024;4(2):303-11.
227. Lee J, Cha S, Kim J, Kim JJ, Kim N, Jae Gal SG, et al. Ensemble Deep Learning Model to Predict Lymphovascular Invasion in Gastric Cancer. Cancers (Basel). 2024;16(2).
229. Mitchell S, Nikolopoulos M, El-Zarka A, Al-Karawi D, Al-Zaidi S, Ghai A, et al. Artificial Intelligence in Ultrasound Diagnoses of Ovarian Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel). 2024;16(2).
231. Christ SM, Pohl K, Willmann J, Heesen P, Heusel A, Ahmadsei M, et al. Patterns of metastatic spread and tumor burden in unselected cancer patients using PET imaging: Implications for the oligometastatic spectrum theory. Clin Transl Radiat Oncol. 2024;45:100724.
233. Wang X, Song Z, Zhu J, Li Z. Correlation Attention Registration Based on Deep Learning from Histopathology to MRI of Prostate. Crit Rev Biomed Eng. 2024;52(2):39-50.
235. Van Dieren L, Amar JZ, Geurs N, Quisenaerts T, Gillet C, Delforge B, et al. Unveiling the power of convolutional neural networks in melanoma diagnosis. Eur J Dermatol. 2023;33(5):495-505.
237. Ross AE, Zhang J, Huang HC, Yamashita R, Keim-Malpass J, Simko JP, et al. External Validation of a Digital Pathology-based Multimodal Artificial Intelligence Architecture in the NRG/RTOG 9902 Phase 3 Trial. Eur Urol Oncol. 2024.
239. Liu Y, Feng Y, Qian L, Wang Z, Hu X. Deep learning diagnostic performance and visual insights in differentiating benign and malignant thyroid nodules on ultrasound images. Exp Biol Med (Maywood). 2023;248(24):2538-46.
241. Fang Y, Chen X, Cao C. Cancer immunotherapy efficacy and machine learning. Expert Rev Anticancer Ther. 2024;24(1-2):21-8.
243. Son S, Joo B, Park M, Suh SH, Oh HS, Kim JW, et al. Development of RLK-Unet: a clinically favorable deep learning algorithm for brain metastasis detection and treatment response assessment. Front Oncol. 2023;13:1273013.
245. Vaish R, Mahajan A, Ghosh Laskar S, Prabhash K, Noronha V, D'Cruz AK. Editorial: Site specific imaging guidelines in head & neck, and skull base cancers. Front Oncol. 2024;14:1357215.
247. Masuzawa T, Sugimura K, Katsuyama S, Yanagisawa K, Shinke G, Kinoshita M, et al. [Robot Assisted Para-Aortic Lymphadenectomy in Gastric Cancer Surgery]. Gan To Kagaku Ryoho. 2023;50(13):1709-11.

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به {مجله تحقيقات پزشكي صارم} می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | {Sarem Journal of Medicine Research}

Designed & Developed by : Yektaweb