Volume 8, Issue 1 (2023)                   SJMR 2023, 8(1): 13-23 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yaghmaeian Mahabadi M, Khaksary Mahabady M. The Application of Different Lasers in Treatment of Male and Female Infertility: A Review. SJMR 2023; 8 (1) : 3
URL: http://saremjrm.com/article-1-288-en.html
1- Tehran Kharazmi University, Tehran, Iran
2- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
Abstract:   (1587 Views)
One of the main worldwide health burdens that couples are facing is infertility. The reasons leading into infertility are attributed equally to males and females. The first usage of laser for the treatment of infertility was in the 1980s, followed by a rapidly growing application in medicine. A variety of biological processes is triggered by laser therapy through interaction with primary cellular photoacceptors. The application of laser in the IVF/ICSI process is increasingly attracting interest. Also, using lasers for assisted hatching has been developed to more accurately control the opening procedure of the zona and facilitates implantation of embryo after being transferred into the uterus. For the first time, the clinical application of different lasers was reviewed based on parameters such as: the quality of sperm and oocyte in ART, sperm properties and different types of diseases. In this review, the indications, limitations, advantages, outcomes, safety and implication of lasers were highlighted for male and female factor infertility aiming to improve, and more judicious use of laser therapy and maximize its potential benefits while minimizing some foreseen complications.
Article number: 3
Full-Text [PDF 529 kb]   (862 Downloads)    
Article Type: Systematical Review | Subject: Sterility
Received: 2023/05/7 | Accepted: 2023/06/1 | Published: 2023/10/7

References
1. Xu, X., et al., Stage-specific germ-cell marker genes are expressed in all mouse pluripotent cell types and emerge early during induced pluripotency. PloS one, 2011. 6(7): e22413. [DOI:10.1371/journal.pone.0022413]
2. . Amini Mahabadi, J., et al., Retinoic acid and 17β‐estradiol improve male germ cell differentiation from mouse‐induced pluripotent stem cells. Andrologia, 2020. 52(2): e13466. [DOI:10.1111/and.13466]
3. . Xie, L., et al., Sertoli cell-mediated differentiation of male germ cell-like cells from human umbilical cord Wharton's jelly-derived mesenchymal stem cells in an in vitro co-culture system. European journal of medical research, 2015. 20(1): 9. [DOI:10.1186/s40001-014-0080-6]
4. . Bortvin, A., et al., Dppa3/Pgc7/stella is a maternal factor and is not required for germ cell specification in mice. BMC developmental biology, 2004. 4(1): 2. [DOI:10.1186/1471-213X-4-2]
5. . Barandeh, B., et al., The protective effects of curcumin on cytotoxic and teratogenic activity of retinoic acid in mouse embryonic liver. J Cell Biochem, 2019. [DOI:10.1002/jcb.28934]
6. . Majdabadi, A., et al., Evaluation of Er: YAG Laser Interaction With Dentin and Enamel Hard Tissues. Dent Clin Experimental J, 2015. 1(1): 1-10. [DOI:10.17795/dcej-5527]
7. 7. Bedient, C., P. Khanna, and N. Desai, Laser pulse application in IVF. Lasers-applications in science and industry: InTech, 2011: 193-214. [DOI:10.5772/24024]
8. . Ilina, I.V., et al., Application of femtosecond laser microsurgery in assisted reproductive technologies for preimplantation embryo tagging. Biomedical Optics Express, 2019. 10(6): 2985-2995. [DOI:10.1364/BOE.10.002985]
9. . Soares, C.A., et al., Photobiological effect of low-level laser irradiation in bovine embryo production system. Journal of biomedical optics, 2014. 19(3): 035006. [DOI:10.1117/1.JBO.19.3.035006]
10. . Kanyo, K., et al., The impact of laser-assisted hatching on the outcome of frozen human embryo transfer cycles. Zygote, 2016. 24(5): 742-747. [DOI:10.1017/S0967199416000058]
11. . Le, M.T., et al., Thinning and drilling laser-assisted hatching in thawed embryo transfer: A randomized controlled trial. Clinical and experimental reproductive medicine, 2018. 45(3): 129-134. [DOI:10.5653/cerm.2018.45.3.129]
12. . Thabet, A.A.E.-M. and M.A. Alshehri, Effect of pulsed high-intensity laser therapy on pain, adhesions, and quality of life in women having endometriosis: a randomized controlled trial. Photomedicine and laser surgery, 2018. 36(7): 363-369. [DOI:10.1089/pho.2017.4419]
13. . Abazari, M.F., et al., Improved osteogenic differentiation of human induced pluripotent stem cells cultured on polyvinylidene fluoride/collagen/platelet‐rich plasma composite nanofibers. Journal of cellular physiology, 2019: 1-10. [DOI:10.1002/jcp.29029]
14. . Borhani, S. and R.S. Yazdi, Clinical applications of low-level laser therapy in reproductive medicine; A literature review. Archives of Reproductive Medicine and Sexual Health, 2018. 1(1): 14-21. [DOI:10.22259/2639-1791.0101003]
15. . Apolikhin, O.I. and S.V. Moskvin, [Laser therapy for mens infertility. Part 2. Systematic review of clinical trials]. Urologiia, 2017(6): 164-171.
16. . Mahabadi, J.A., et al., Application of induced pluripotent stem cell and embryonic stem cell technology to the study of male infertility. Journal of cellular physiology, 2018. 233(11): 8441-8449. [DOI:10.1002/jcp.26757]
17. . Dabaja, A.A. and P.N. Schlegel, Medical treatment of male infertility. Translational andrology and urology, 2014. 3(1): 9-16.
18. . Naz, M. and M. Kamal, Classification, causes, diagnosis and treatment of male infertility: a review. Oriental pharmacy and experimental medicine, 2017. 17(2): 89-109. [DOI:10.1007/s13596-017-0269-7]
19. . Kupis, L., P.A. Dobronski, and P. Radziszewski, Varicocele as a source of male infertility-current treatment techniques. Central European journal of urology, 2015. 68(3): 365-370. [DOI:10.5173/ceju.2015.642]
20. . Cocuzza, M., C. Alvarenga, and R. Pagani, The epidemiology and etiology of azoospermia. Clinics, 2013. 68: 15-26. [DOI:10.6061/clinics/2013(Sup01)03]
21. . Harlev, A., et al., Smoking and male infertility: an evidence-based review. The world journal of men's health, 2015. 33(3): 143-160. [DOI:10.5534/wjmh.2015.33.3.143]
22. . Arcaniolo, D., et al., Is there a place for nutritional supplements in the treatment of idiopathic male infertility? Archivio Italiano di Urologia e Andrologia, 2014. 86(3): 164-170. [DOI:10.4081/aiua.2014.3.164]
23. . Pizent, A., B. Tariba, and T. Zivkovic, Reproductive toxicity of metals in men. Archives of industrial hygiene and toxicology, 2012. 63(Supplement 1): 35-46. [DOI:10.2478/10004-1254-63-2012-2151]
24. . Anwar, S. and A. Anwar, Infertility: A review on causes, treatment and management. Women's Health Gynecol, 2016. 2(6): 1-5.
25. . Medicine, P.C.o.t.A.S.f.R., Diagnostic evaluation of the infertile female: a committee opinion. Fertility and sterility, 2012. 98(2): 302-307. [DOI:10.1016/j.fertnstert.2012.05.032]
26. . Lindsay, T.J. and K.R. Vitrikas, Evaluation and treatment of infertility. Am Fam Physician, 2015. 91(5): 308-314.
27. . Weiss, R.V. and R. Clapauch, Female infertility of endocrine origin. Arquivos Brasileiros de Endocrinologia & Metabologia, 2014. 58(2): 144-152. [DOI:10.1590/0004-2730000003021]
28. . Torres-Mapa, M.L., et al., Integrated holographic system for all-optical manipulation of developing embryos. Biomedical optics express, 2011. 2(6): 1564-1575. [DOI:10.1364/BOE.2.001564]
29. . Tadir, Y., et al., Force generated by human sperm correlated to velocity and determined using a laser generated optical trap. Fertility and Sterility, 1990. 53(5): 944-947. [DOI:10.1016/S0015-0282(16)53539-0]
30. . Tadir, Y., et al., Micromanipulation of gametes using laser microbeams. Human reproduction, 1991. 6(7): 1011-1016. [DOI:10.1093/oxfordjournals.humrep.a137451]
31. . Montag, M.H., et al., Application of non-contact laser technology in assisted reproduction. Medical Laser Application, 2009. 24(1): 57-64. [DOI:10.1016/j.mla.2008.11.001]
32. . Fernandes, G.H.C., et al., The effect of low-level laser irradiation on sperm motility, and integrity of the plasma membrane and acrosome in cryopreserved bovine sperm. PloS one, 2015. 10(3): e0121487. [DOI:10.1371/journal.pone.0121487]
33. . Manchini, M.T., et al., Amelioration of cardiac function and activation of anti-inflammatory vasoactive peptides expression in the rat myocardium by low level laser therapy. PLoS One, 2014. 9(7): e101270. [DOI:10.1371/journal.pone.0101270]
34. . Iaffaldano, N., et al., The irradiation of rabbit sperm cells with He-Ne laser prevents their in vitro liquid storage dependent damage. Animal reproduction science, 2010. 119(1-2): 123-129. [DOI:10.1016/j.anireprosci.2009.10.005]
35. . Iaffaldano, N., et al., The post-thaw irradiation of avian spermatozoa with He-Ne laser differently affects chicken, pheasant and turkey sperm quality. Animal reproduction science, 2013. 142(3-4): 168-172. [DOI:10.1016/j.anireprosci.2013.09.010]
36. . Alexiades-Armenakas, M.R., J.S. Dover, and K.A. Arndt, The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing. Journal of the American Academy of Dermatology, 2008. 58(5): 719-737. [DOI:10.1016/j.jaad.2008.01.003]
37. . Preissig, J., K. Hamilton, and R. Markus, Current Laser Resurfacing Technologies: A Review that Delves Beneath the Surface. Semin Plast Surg, 2012. 26(3): 109-16. [DOI:10.1055/s-0032-1329413]
38. . Posadzka, E., et al., Assessment of ovarian reserve in patients with ovarian endometriosis following laparoscopic enucleation of a cyst accompanied by CO2 laser ablation or electroablation. Przegl Lek, 2016. 73(1): 6-11.
39. . Pados, G., et al., Sonographic changes after laparoscopic cystectomy compared with three-stage management in patients with ovarian endometriomas: a prospective randomized study. Hum Reprod, 2010. 25(3): 672-7. [DOI:10.1093/humrep/dep448]
40. . Shimizu, Y., et al., Long‐term outcome, including pregnancy rate, recurrence rate and ovarian reserve, after laparoscopic laser ablation surgery in infertile women with endometrioma. Journal of Obstetrics and Gynaecology Research, 2010. 36(1): 115-118. [DOI:10.1111/j.1447-0756.2009.01119.x]
41. . Abdullah, S.S., J.H. Taha, and M.H. Ahmed, Effect of helium-neon laser on the lymphocyte cells and their DNA. Iraqi Journal Of Medical Sciences, 2017. 15(3): 275-282.
42. . Wu, C.S., et al., Low‐energy helium‐neon laser therapy induces repigmentation and improves the abnormalities of cutaneous microcirculation in segmental‐type vitiligo lesions. The Kaohsiung journal of medical sciences, 2008. 24(4): 180-189. [DOI:10.1016/S1607-551X(08)70115-3]
43. . Sahu, K., S.K. Mohanty, and P.K. Gupta, He-Ne laser (632.8 nm) pre‐irradiation gives protection against DNA damage induced by a near‐infrared trapping beam. Journal of biophotonics, 2009. 2(3): 140-144. [DOI:10.1002/jbio.200810041]
44. . Karu, T.I., et al., Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. Journal of Photochemistry and Photobiology B: Biology, 2005. 81(2): 98-106. [DOI:10.1016/j.jphotobiol.2005.07.002]
45. . Manteifel, V. and T. Karu, Prolonged effects of He-Ne laser irradiation on ultrastructure of mitochondria in successive generations of yeast cells. Mitochondrion, 2007. 241(10.8): 21-31.
46. . Feichtinger, W., et al., Photoablation of oocyte zona pellucida by erbium-YAG laser for in-vitro fertilisation in severe male infertility. The Lancet, 1992. 339(8796): 811. [DOI:10.1016/0140-6736(92)91938-5]
47. . Schiewe, M., The Historic Development and Incorporation of Four Assisted Reproductive Technologies Shaping Today's IVF Industry. FIV Reprod Med Genet, 2016. 4: 173-180. [DOI:10.4172/2375-4508.1000173]
48. . Bachmann, A. and R. Ruszat, The KTP-(greenlight-) laser--principles and experiences. Minim Invasive Ther Allied Technol, 2007. 16(1): 5-10. [DOI:10.1080/13645700601157885]
49. . Bhatta, N., et al., Comparative study of different laser systems. Fertility and sterility, 1994. 61(4): 581-591. [DOI:10.1016/S0015-0282(16)56629-1]
50. . Boretto, M., et al., Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nature cell biology, 2019. 21(8): 1041-1051. [DOI:10.1038/s41556-019-0360-z]
51. . Valiani, M., et al., The effects of massage therapy on dysmenorrhea caused by endometriosis. Iranian journal of nursing and midwifery research, 2010. 15(4): 167-171.
52. . Starkey, J.R., et al., New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse. Clinical Cancer Research, 2008. 14(20): 6564-6573. [DOI:10.1158/1078-0432.CCR-07-4162]
53. . Meuleman, C., et al., Clinical outcome after CO2 laser laparoscopic radical excision of endometriosis with colorectal wall invasion combined with laparoscopic segmental bowel resection and reanastomosis. Human reproduction, 2011. 26(9): 2336-2343. [DOI:10.1093/humrep/der231]
54. . Meuleman, C., et al., Outcome after multidisciplinary CO2 laser laparoscopic excision of deep infiltrating colorectal endometriosis. Reproductive biomedicine online, 2009. 18(2): 282-289. [DOI:10.1016/S1472-6483(10)60267-2]
55. . Chang, F.-H., et al., Efficacy of isotopic 13CO2 laser laparoscopic evaporation in the treatment of infertile patients with minimal and mild endometriosis: a life table cumulative pregnancy rates study. The Journal of the American Association of Gynecologic Laparoscopists, 1997. 4(2): 219-223. [DOI:10.1016/S1074-3804(97)80013-8]
56. . Posadzka, E., et al., Assessment of ovarian reserve in patients with ovarian endometriosis following laparoscopic enucleation of a cyst accompanied by CO2 laser ablation or electroablation. Przegl Lek, 2016. 73(1): 6-10.
57. . Larke, N.L., et al., Male circumcision and penile cancer: a systematic review and meta-analysis. Cancer causes & control, 2011. 22(8): 1097-1110. [DOI:10.1007/s10552-011-9785-9]
58. . Windahl, T., et al., Sexual function and satisfaction in men after laser treatment for penile carcinoma. The Journal of urology, 2004. 172(2): 648-651. [DOI:10.1097/01.ju.0000132891.68094.87]
59. . Donnez, J., et al., Laparoscopic management of endometriomas using a combined technique of excisional (cystectomy) and ablative surgery. Fertility and sterility, 2010. 94(1): 28-32. [DOI:10.1016/j.fertnstert.2009.02.065]
60. 60. Unlu, C. and G. Yıldırım, Ovarian cystectomy in endometriomas: combined approach. Journal of the Turkish German Gynecological Association, 2014. 15(3): 177-189. [DOI:10.5152/jtgga.2014.1111]
61. . Merchant, R., G. Gandhi, and G.N. Allahbadia, In vitro fertilization/intracytoplasmic sperm injection for male infertility. Indian journal of urology: IJU: journal of the Urological Society of India, 2011. 27(1): 121-132. [DOI:10.4103/0970-1591.78430]
62. Schrider, D.R., et al., Gene copy-number polymorphism caused by retrotransposition in humans. PLoS genetics, 2013. 9(1): e1003242. [DOI:10.1371/journal.pgen.1003242]
63. . Firestone, R.S., et al., The effects of low‐level laser light exposure on sperm motion characteristics and DNA damage. Journal of andrology, 2012. 33(3): 469-473. [DOI:10.2164/jandrol.111.013458]
64. . Luke, L., M. Tourmente, and E.R. Roldan, Sexual selection of protamine 1 in mammals. Molecular biology and evolution, 2015. 33(1): 174-184. [DOI:10.1093/molbev/msv209]
65. . Champroux, A., et al., Mammalian sperm nuclear organization: resiliencies and vulnerabilities. Basic and clinical andrology, 2016. 26(1): 17. [DOI:10.1186/s12610-016-0044-5]
66. . La Spina, F.A., et al., Heterogeneous distribution of histone methylation in mature human sperm. Journal of assisted reproduction and genetics, 2014. 31(1): 45-49. [DOI:10.1007/s10815-013-0137-4]
67. . Amor, H., et al., Protamine Ratio as Predictor of the Fertility Potential of Sperm by Couple Undergoing ICSI. International Journal of Women's Health and Reproduction Sciences, 2018. 6(4): 400-409. [DOI:10.15296/ijwhr.2018.67]
68. . Behtaj, S. and M. Weber, Using Laser Acupuncture and Low Level Laser Therapy (LLLT) to Treat Male Infertility by Improving Semen Quality: Case Report. Arch Clin Med Case Rep, 2019. 3(5): 349-352. [DOI:10.26502/acmcr.96550103]
69. . Balhorn, R., The protamine family of sperm nuclear proteins. Genome biology, 2007. 8(9): 227. [DOI:10.1186/gb-2007-8-9-227]
70. . Tahmasebi, A., et al., MicroRNA incorporated electrospun nanofibers improve osteogenic differentiation of human induced pluripotent stem cells. J Biomed Mater Res A, 2019. [DOI:10.1002/jbm.a.36824]
71. . Davidson, L.M., et al., Laser technology in the assisted reproductive technology laboratory: a narrative review. Reproductive biomedicine online, 2018. 38(5): 725-739. [DOI:10.1016/j.rbmo.2018.12.011]
72. . Shafiei, G., et al., L-carnitine reduces the adverse effects of ROS and up-regulates the expression of implantation related genes in in vitro developed mouse embryos. Theriogenology, 2020. 145: 59-66. [DOI:10.1016/j.theriogenology.2020.01.008]
73. . Li, M.-W., et al., Safety, efficacy and efficiency of laser-assisted IVF in subfertile mutant mouse strains. Reproduction (Cambridge, England), 2013. 145(3): 245-254. [DOI:10.1530/REP-12-0477]
74. . Ebner, T., et al., Laser assisted immobilization of spermatozoa prior to intracytoplasmic sperm injection in humans. Human Reproduction, 2001. 16(12): 2628-2631. [DOI:10.1093/humrep/16.12.2628]
75. . Siqueira, A.F., et al., Effects of photobiomodulation therapy (PBMT) on bovine sperm function. Lasers in medical science, 2016. 31(6): 1245-1250. [DOI:10.1007/s10103-016-1966-z]
76. . Fernandes, G.H.C., et al., The effect of low-level laser irradiation on sperm motility, and integrity of the plasma membrane and acrosome in cryopreserved bovine sperm. PLoS One, 2015. 10(3). [DOI:10.1371/journal.pone.0121487]
77. . Sato, H., et al., The effects of laser light on sperm motility and velocity in vitro. Andrologia, 1984. 16(1): 23-25. [DOI:10.1111/j.1439-0272.1984.tb00229.x]
78. . Yazdi, R.S., et al., Effect of 830-nm diode laser irradiation on human sperm motility. Lasers in medical science, 2014. 29(1): 97-104. [DOI:10.1007/s10103-013-1276-7]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | {Sarem Journal of Medical Research}

Designed & Developed by : Yektaweb