دوره 7، شماره 1 - ( 1401 )                   دوره 7 شماره 1 صفحات 14-1 | برگشت به فهرست نسخه ها

Research code: 0
Ethics code: 0
Clinical trials code: 0


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassani Bafrani M, Amini Mahabadi A, Hassani bafrani H, Barandeh B. The Application of Mesenchymal Stem Cells Derived From Different Sources in the Treatment of Infertility: A Review Article. SJMR 2022; 7 (1) : 1
URL: http://saremjrm.com/article-1-251-fa.html
حسنی بافرانی مهدی، امینی مهابادی علیرضا، حسنی بافرانی حسن، برنده بهروز. کاربرد سلول های بنیادی مزانشیمی استخراج شده از منابع مختلف در درمان ناباروری: مقاله ی مروری. مجله تحقيقات پزشكي صارم. 1401; 7 (1) :1-14

URL: http://saremjrm.com/article-1-251-fa.html


1- کمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی هرمزگان، بندرعباس، ایران
2- مسئول امور اداری، دانشگاه پیام نور اردستان، اصفهان، ایران
3- استاد تمام؛ مرکز تحقیقات گامتوژنزیس دانشگاه علوم پزشکی کاشان، کاشان، ایران ، hhassanib@gmail.com
4- گروه زیست شناسی، دانشکده علوم، دانشگاه رازی، کرمانشاه، ایران
چکیده:   (2061 مشاهده)
مقدمه: ناباروری یک بیماری شایع و پیچیده است که 10 الی 15 درصد از زوج‌های در سن باروری را در سراسر جهان تحت تأثیر قرار می‌دهد. امروزه، اگرچه روش کمک باروری (ART) به عنوان موثرترین روش برای درمان ناباروری در انسان به شمار می رود، اما استفاده از این روش با محدودیت هایی همراه است. سلول های بنیادی به دلیل ویژگی های بیولوژیکی خود می توانند مکانیسم های ایمونولوژیک را تنظیم کرده و رحم، تخمدان ها و بافت لوله رحمی را ترمیم کنند. اخیراً درمان با سلول های بنیادی مزانشیمی (MSCs) به عنوان گزینه جدیدی برای درمان ناباروری در نظر گرفته شده است. بنابراین، هدف از این مطالعه، بررسی کاربرد سلول های بنیادی مزانشیمی استخراج شده از بافت های مختلف در درمان ناباروری مردان و زنان می باشد.
نتیجه گیری: MSCs کاندیدای قوی برای سلول درمانی با فعالیت افزایش ترشح فاکتور رشد و ظرفیت تعدیل کننده ایمنی برتر هستند. عوارض جانبی درمان این سلول ها تا حدودی قابل کنترل است و ممکن است ارتباطی بین درمان و بروز سرطان و نیز مرگ و میر در بیماران تحت درمان وجود داشته باشد. با این حال، پیگیری های طولانی تری برای مطالعه وقایع دیررس، به ویژه در شکل گیری و پیشرفت تومور مورد نیاز می باشند.
شماره‌ی مقاله: 1
متن کامل [PDF 1099 kb]   (460 دریافت)    
نوع مقاله: مروری تحلیلی | موضوع مقاله: ناباروری
دریافت: 1401/2/1 | پذیرش: 1401/2/25 | انتشار: 1401/10/18

فهرست منابع
1. 1. Liang G, et al., Effects of oil-soluble versus water-soluble contrast media at hysterosalpingography on pregnancy outcomes in women with a low risk of tubal disease: study protocol for a randomised controlled trial. BMJ open, 2020. 10(10): p. e039166. [DOI:10.1136/bmjopen-2020-039166]
2. Chang Z, et al., Mesenchymal stem cells in preclinical infertility cytotherapy: a retrospective review. Stem Cells International, 2021. 2021. [DOI:10.1155/2021/8882368]
3. Farquhar C and Marjoribanks J, Assisted reproductive technology: an overview of Cochrane Reviews. Cochrane Database of Systematic Reviews, 2018(8). [DOI:10.1002/14651858.CD010537.pub5]
4. Hull M, et al., Population study of causes, treatment, and outcome of infertility. Br Med J (Clin Res Ed), 1985. 291(6510): p. 1693-1697. [DOI:10.1136/bmj.291.6510.1693]
5. Mehta A and Sigman M, Management of the dry ejaculate: a systematic review of aspermia and retrograde ejaculation. Fertility and sterility, 2015. 104(5): p. 1074-1081. [DOI:10.1016/j.fertnstert.2015.09.024]
6. Huang X, et al., Differences in the transcriptional profiles of human cumulus cells isolated from MI and MII oocytes of patients with polycystic ovary syndrome. Reproduction, 2013. 145(6): p. 597-608. [DOI:10.1530/REP-13-0005]
7. Yildiz BO, et al., Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Human reproduction, 2012. 27(10): p. 3067-3073. [DOI:10.1093/humrep/des232]
8. Sheikhansari G, et al., Current approaches for the treatment of premature ovarian failure with stem cell therapy. Biomedicine & pharmacotherapy, 2018. 102: p. 254-262. [DOI:10.1016/j.biopha.2018.03.056]
9. Huhtaniemi I, et al., Advances in the molecular pathophysiology, genetics, and treatment of primary ovarian insufficiency. Trends in Endocrinology & Metabolism, 2018. 29(6): p. 400-419. [DOI:10.1016/j.tem.2018.03.010]
10. Thakur M, Feldman G, and Puscheck EE, Primary ovarian insufficiency in classic galactosemia: current understanding and future research opportunities. Journal of assisted reproduction and genetics, 2018. 35(1): p. 3-16. [DOI:10.1007/s10815-017-1039-7]
11. Laven JS. Primary ovarian insufficiency. in Seminars in reproductive medicine. 2016. Thieme Medical Publishers. [DOI:10.1055/s-0036-1585402]
12. Nayernia K, et al., Derivation of male germ cells from bone marrow stem cells. Laboratory investigation, 2006. 86(7): p. 654-663. [DOI:10.1038/labinvest.3700429]
13. Ghasemzadeh‐Hasankolaei M, Sedighi‐Gilani M, and Eslaminejad M, Induction of ram bone marrow mesenchymal stem cells into germ cell lineage using transforming growth factor‐β superfamily growth factors. Reproduction in Domestic Animals, 2014. 49(4): p. 588-598. [DOI:10.1111/rda.12327]
14. Ghasemzadeh‐Hasankolaei M, et al., Comparison of the efficacy of three concentrations of retinoic acid for transdifferentiation induction in sheep marrow‐derived mesenchymal stem cells into male germ cells. Andrologia, 2014. 46(1): p. 24-35. [DOI:10.1111/and.12037]
15. Cakici C, et al., Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation. BioMed research international, 2013. 2013. [DOI:10.1155/2013/529589]
16. Tamadon A, et al., Induction of spermatogenesis by bone marrow-derived mesenchymal stem cells in busulfan-induced azoospermia in hamster. International journal of stem cells, 2015. 8(2): p. 134-145. [DOI:10.15283/ijsc.2015.8.2.134]
17. Geijsen N, et al., Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 2004. 427(6970): p. 148-154. [DOI:10.1038/nature02247]
18. Hua J, et al., Derivation of male germ cell-like lineage from human fetal bone marrow stem cells. Reproductive biomedicine online, 2009. 19(1): p. 99-105. [DOI:10.1016/S1472-6483(10)60052-1]
19. Dyce PW, et al., In vitro and in vivo germ line potential of stem cells derived from newborn mouse skin. PloS one, 2011. 6(5): p. e20339. [DOI:10.1371/journal.pone.0020339]
20. Young HE and Black Jr AC, Adult stem cells. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology: An Official Publication of the American Association of Anatomists, 2004. 276(1): p. 75-102. [DOI:10.1002/ar.a.10134]
21. Sandel MJ, Embryo ethics-the moral logic of stem-cell research. New England Journal of Medicine, 2004. 351(3): p. 207-209. [DOI:10.1056/NEJMp048145]
22. Hyun I, The bioethics of stem cell research and therapy. The Journal of clinical investigation, 2010. 120(1): p. 71-75. [DOI:10.1172/JCI40435]
23. Hajihoseini M, et al., Induction of spermatogenesis after stem cell therapy of azoospermic guinea pigs. Veterinarski arhiv, 2017. 87(3): p. 333-350. [DOI:10.24099/vet.arhiv.151209]
24. Mehrabani D, et al., Adipose tissue-derived mesenchymal stem cells repair germinal cells of seminiferous tubules of busulfan-induced azoospermic rats. Journal of human reproductive sciences, 2015. 8(2): p. 103-110. [DOI:10.4103/0974-1208.158618]
25. Mehrabani D, et al., The growth kinetic, differentiation properties, karyotyping, and characterization of adipose tissue-derived stem cells in hamster. Comparative Clinical Pathology, 2016. 25(5): p. 1017-1022. [DOI:10.1007/s00580-016-2300-7]
26. Shaterzadeh-Yazdi H, et al., Osteogenic potential of subcutaneous adipose-derived stem cells in a rabbit model. Online Journal of Veterinary Research, 2015. 19(7): p. 436-445.
27. Mehrabani D, et al., Isolation, culture, characterization, and adipogenic differentiation of heifer endometrial mesenchymal stem cells. Comparative Clinical Pathology, 2015. 24(5): p. 1159-1164. [DOI:10.1007/s00580-014-2053-0]
28. Tamadon A, et al., Caprine endometrial mesenchymal stromal stem cell: multilineage potential, characterization, and growth kinetics in breeding and anestrous stages. Veterinary medicine international, 2017. 2017. [DOI:10.1155/2017/5052801]
29. Mehrabani D, et al., Growth kinetics and characterization of human dental pulp stem cells: Comparison between third molar and first premolar teeth. Journal of clinical and experimental dentistry, 2017. 9(2): p. e172. [DOI:10.4317/jced.52824]
30. Khodabandeh Z, et al., Comparison of the expression of hepatic genes by human Wharton's jelly mesenchymal stem cells cultured in 2D and 3D collagen culture systems. Iranian journal of medical sciences, 2016. 41(1): p. 28.
31. Mehrabani D, et al., Growth kinetics, characterization, and plasticity of human menstrual blood stem cells. Iranian Journal of Medical Sciences, 2016. 41(2): p. 132-139.
32. Li C-y, et al., Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem cell research & therapy, 2015. 6(1): p. 1-13. [DOI:10.1186/s13287-015-0066-5]
33. Fazeli Z, et al., Mesenchymal stem cells (MSCs) therapy for recovery of fertility: a systematic review. Stem Cell Reviews and Reports, 2018. 14(1): p. 1-12. [DOI:10.1007/s12015-017-9765-x]
34. Miyamoto T, et al., Male infertility and its causes in human. Adv Urol. 2012; 2012: 384520. [DOI:10.1155/2012/384520]
35. Miyamoto T, et al., Male infertility and its genetic causes. Journal of Obstetrics and Gynaecology Research, 2015. 41(10): p. 1501-1505. [DOI:10.1111/jog.12765]
36. Gidoni Y, et al., Fertility preservation in patients with non-oncological conditions. Reprod Biomed Online, 2008. 16(6): p. 792-800. [DOI:10.1016/S1472-6483(10)60144-7]
37. Anwar S and Anwar A, Infertility: A review on causes, treatment and management. Womens Health Gynecol, 2016. 5: p. 2-5.
38. Semet M, et al., The impact of drugs on male fertility: a review. Andrology, 2017. 5(4): p. 640-663. [DOI:10.1111/andr.12366]
39. Holmberg L, et al., Increased risk of recurrence after hormone replacement therapy in breast cancer survivors. Journal of the National Cancer Institute, 2008. 100(7): p. 475-482. [DOI:10.1093/jnci/djn058]
40. Vermeulen R, et al., Safety of hormone replacement therapy following risk-reducing salpingo-oophorectomy: systematic review of literature and guidelines. Climacteric, 2019. 22(4): p. 352-360. [DOI:10.1080/13697137.2019.1582622]
41. Schlegel P, Evaluation of male infertility. Minerva ginecologica, 2009. 61(4): p. 261-283.
42. Gomez R, et al. Physiology and pathology of ovarian hyperstimulation syndrome. in Seminars in reproductive medicine. 2010. © Thieme Medical Publishers. [DOI:10.1055/s-0030-1265670]
43. Prakash A, Karasu T, and Mathur R, Ovarian hyperstimulation syndrome: pathophysiology, prevention and management. Obstetrics, Gynaecology & Reproductive Medicine, 2009. 19(9): p. 247-252. [DOI:10.1016/j.ogrm.2009.05.003]
44. Van Voorhis BJ and Ryan GL. Ethical obligation for restricting the number of embryos transferred to women: combating the multiple-birth epidemic from in vitro fertilization. in Seminars in reproductive medicine. 2010. © Thieme Medical Publishers. [DOI:10.1055/s-0030-1255176]
45. Wu J-X, et al., Stem Cell Therapies for Human Infertility: Advantages and Challenges. Cell Transplantation, 2022. 31: p. 09636897221083252. [DOI:10.1177/09636897221083252]
46. Leaver RB, Male infertility: an overview of causes and treatment options. British Journal of Nursing, 2016. 25(18): p. S35-S40. [DOI:10.12968/bjon.2016.25.18.S35]
47. Lundy SD and Sabanegh Jr ES, Varicocele management for infertility and pain: a systematic review. Arab journal of urology, 2018. 16(1): p. 157-170. [DOI:10.1016/j.aju.2017.11.003]
48. Wosnitzer MS and Goldstein M, Obstructive azoospermia. Urologic Clinics, 2014. 41(1): p. 83-95. [DOI:10.1016/j.ucl.2013.08.013]
49. Giorgione V, et al., Congenital heart defects in IVF/ICSI pregnancy: systematic review and meta‐analysis. Ultrasound in Obstetrics & Gynecology, 2018. 51(1): p. 33-42. [DOI:10.1002/uog.18932]
50. Davies MJ, et al., Reproductive technologies and the risk of birth defects. New England Journal of Medicine, 2012. 366(19): p. 1803-1813. [DOI:10.1056/NEJMoa1008095]
51. Spiller C, Koopman P, and Bowles J, Sex determination in the mammalian germline. Annual review of genetics, 2017. 51: p. 265-285. [DOI:10.1146/annurev-genet-120215-035449]
52. Sugiura K, et al., Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development, 2007. 134(14): p. 2593-2603. [DOI:10.1242/dev.006882]
53. Chang H, Brown CW, and Matzuk MM, Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocrine reviews, 2002. 23(6): p. 787-823. [DOI:10.1210/er.2002-0003]
54. Schisterman E, et al., Lipid levels and couple fecundity: the life study. Fertility and Sterility, 2013. 100(3): p. S341. [DOI:10.1016/j.fertnstert.2013.07.901]
55. Khan KN, et al., Toll-like receptors in innate immunity: role of bacterial endotoxin and toll-like receptor 4 in endometrium and endometriosis. Gynecologic and obstetric investigation, 2009. 68(1): p. 40-52. [DOI:10.1159/000212061]
56. Chen S, et al., Expression of the T regulatory cell transcription factor FoxP3 in peri-implantation phase endometrium in infertile women with endometriosis. Reproductive Biology and Endocrinology, 2012. 10(1): p. 1-7. [DOI:10.1186/1477-7827-10-34]
57. Mark-Kappeler CJ, Hoyer PB, and Devine PJ, Xenobiotic effects on ovarian preantral follicles. Biology of reproduction, 2011. 85(5): p. 871-883. [DOI:10.1095/biolreprod.111.091173]
58. Singer D, et al., The silent grief: psychosocial aspects of premature ovarian failure. Climacteric, 2011. 14(4): p. 428-437. [DOI:10.3109/13697137.2011.571320]
59. Nargund G and Frydman R, Towards a more physiological approach to IVF. Reproductive biomedicine online, 2007. 14(5): p. 550-552. [DOI:10.1016/S1472-6483(10)61043-7]
60. Lim J-H, et al., Selection of patients for natural cycle in vitro fertilization combined with in vitro maturation of immature oocytes. Fertility and sterility, 2009. 91(4): p. 1050-1055. [DOI:10.1016/j.fertnstert.2008.01.066]
61. Garcia Cruz DM, et al., Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. Journal of biomedical materials research Part A, 2010. 95(4): p. 1182-1193. [DOI:10.1002/jbm.a.32906]
62. Ahn JS, et al., Expression profile of spermatogenesis associated genes in male germ cells during postnatal development in mice. Journal of Animal Reproduction and Biotechnology, 2020. 35(4): p. 289-296. [DOI:10.12750/JARB.35.4.289]
63. Watt FM, Hogan, and LM B, Out of Eden: stem cells and their niches. Science, 2000. 287(5457): p. 1427-1430. [DOI:10.1126/science.287.5457.1427]
64. Takahashi K and Yamanaka S, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell, 2006. 126(4): p. 663-676. [DOI:10.1016/j.cell.2006.07.024]
65. Du H and Taylor HS, Reviews: stem cells and female reproduction. Reproductive Sciences, 2009. 16(2): p. 126-139. [DOI:10.1177/1933719108329956]
66. Méndez-Ferrer S, et al., Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. nature, 2010. 466(7308): p. 829-834. [DOI:10.1038/nature09262]
67. Easley IV CA, Simerly CR, and Schatten G, Stem cell therapeutic possibilities: future therapeutic options for male-factor and female-factor infertility? Reproductive biomedicine online, 2013. 27(1): p. 75-80. [DOI:10.1016/j.rbmo.2013.03.003]
68. Brinster RL, Male germline stem cells: from mice to men. Science, 2007. 316(5823): p. 404-405. [DOI:10.1126/science.1137741]
69. Oatley JM and Brinster RL, Spermatogonial stem cells. Methods in enzymology, 2006. 419: p. 259-282. [DOI:10.1016/S0076-6879(06)19011-4]
70. Hermann B, et al., Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell stem cell, 2012. 11(5): p. 715-726. [DOI:10.1016/j.stem.2012.07.017]
71. Yin L, et al., Therapeutic advances of stem cell-derived extracellular vesicles in regenerative medicine. Cells, 2020. 9(3): p. 707. [DOI:10.3390/cells9030707]
72. King NM and Perrin J, Ethical issues in stem cell research and therapy. Stem Cell Research & Therapy, 2014. 5(4): p. 1-6. [DOI:10.1186/scrt474]
73. Mahabadi JA, et al., Derivation of male germ cells from induced pluripotent stem cells by inducers: A review. Cytotherapy, 2018. 20(3): p. 279-290. [DOI:10.1016/j.jcyt.2018.01.002]
74. Nagamatsu G and Hayashi K, Stem cells, in vitro gametogenesis and male fertility. Reproduction, 2017. 154(6): p. 79-91. [DOI:10.1530/REP-17-0510]
75. Mehrabani D, Healing effect of conditioned media from bone marrow-derived stem cells in thioacetamide-induced liver fibrosis of rat. Journal of Medical Sciences, 2016. 16(1-2): p. 7-15. [DOI:10.3923/jms.2016.7.15]
76. Aliborzi G, et al., Isolation, characterization and growth kinetic comparison of bone marrow and adipose tissue mesenchymal stem cells of Guinea pig. International journal of stem cells, 2016. 9(1): p. 115-123. [DOI:10.15283/ijsc.2016.9.1.115]
77. Rahmanifar F, et al., Histomorphometric evaluation of treatment of rat azoosper-mic seminiferous tubules by allotransplantation of bone marrow-derived mesenchymal stem cells. Iranian Journal of Basic Medical Sciences, 2016. 19(6): p. 653-661.
78. Razeghian Jahromi I, et al., The effect of fetal rat brain extract on morphology of bone marrow-derived mesenchymal stem cells. Comparative Clinical Pathology, 2016. 25(2): p. 343-349. [DOI:10.1007/s00580-015-2188-7]
79. Jahromi IR, et al., Emergence of signs of neural cells after exposure of bone marrow-derived mesenchymal stem cells to fetal brain extract. Iranian journal of basic medical sciences, 2017. 20(3): p. 301-307.
80. Dezawa M, Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of muse cells to tissue regeneration. Cell transplantation, 2016. 25(5): p. 849-861. [DOI:10.3727/096368916X690881]
81. Kuroda Y, et al., Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nature protocols, 2013. 8(7): p. 1391-1415. [DOI:10.1038/nprot.2013.076]
82. Mehrabani D, et al., Adipose tissue-derived mesenchymal stem cells repair germinal cells of seminiferous tubules of busulfan-induced azoospermic rats. Journal of human reproductive sciences, 2015. 8(2): p. 103. [DOI:10.4103/0974-1208.158618]
83. Karimaghai N, et al., Spermatogenesis after transplantation of adipose tissue-derived mesenchymal stem cells in busulfan-induced azoospermic hamster. Iranian journal of basic medical sciences, 2018. 21(7): p. 660-667.
84. Panahi M, et al. Busulfan induced azoospermia: Stereological evaluation of testes in rat. in Veterinary Research Forum. 2015. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
85. Van Saen D, et al., Bone marrow stem cells transplanted to the testis of sterile mice do not differentiate into spermatogonial stem cells and have no protective effect on fertility. Fertility and sterility, 2009. 91(4): p. 1549-1552. [DOI:10.1016/j.fertnstert.2008.09.036]
86. Yang S, et al., Derivation of male germ cells from induced pluripotent stem cells in vitro and in reconstituted seminiferous tubules. Cell Proliferation, 2012. 45(2): p. 91-100. [DOI:10.1111/j.1365-2184.2012.00811.x]
87. Lue Y, et al., Fate of bone marrow stem cells transplanted into the testis: potential implication for men with testicular failure. The American journal of pathology, 2007. 170(3): p. 899-908. [DOI:10.2353/ajpath.2007.060543]
88. Chen H, et al., Differentiation of human umbilical cord mesenchymal stem cells into germ-like cells in mouse seminiferous tubules. Molecular Medicine Reports, 2015. 12(1): p. 819-828. [DOI:10.3892/mmr.2015.3528]
89. Zhu Y, et al., Generation of male germ cells from induced pluripotent stem cells (iPS cells): an in vitro and in vivo study. Asian journal of andrology, 2012. 14(4): p. 574-579. [DOI:10.1038/aja.2012.3]
90. Abd Allah SH, et al., Molecular effect of human umbilical cord blood CD34-positive and CD34-negative stem cells and their conjugate in azoospermic mice. Molecular and cellular biochemistry, 2017. 428(1): p. 179-191. [DOI:10.1007/s11010-016-2928-2]
91. Hassan AI and Alam SS, Evaluation of mesenchymal stem cells in treatment of infertility in male rats. Stem cell research & therapy, 2014. 5(6): p. 1-15. [DOI:10.1186/scrt521]
92. Xie L, et al., Sertoli cell-mediated differentiation of male germ cell-like cells from human umbilical cord Wharton's jelly-derived mesenchymal stem cells in an in vitro co-culture system. European Journal of Medical Research, 2015. 20(1): p. 1-10. [DOI:10.1186/s40001-014-0080-6]
93. Mital P, Kaur G, and Dufour JM, Immunoprotective sertoli cells: making allogeneic and xenogeneic transplantation feasible. Reproduction, 2010. 139(3): p. 495-504. [DOI:10.1530/REP-09-0384]
94. Ryan JM, et al., Mesenchymal stem cells avoid allogeneic rejection. Journal of inflammation, 2005. 2(1): p. 1-11. [DOI:10.1186/1476-9255-2-8]
95. Bibber B, et al., A review of stem cell translation and potential confounds by cancer stem cells. Stem cells international, 2013. 2013. [DOI:10.1155/2013/241048]
96. Aghamir SMK, et al., Does bone marrow-derived mesenchymal stem cell transfusion prevent antisperm antibody production after traumatic testis rupture? Urology, 2014. 84(1): p. 82-86. [DOI:10.1016/j.urology.2014.03.009]
97. Hetemäki N, et al., Adipose tissue estrogen production and metabolism in premenopausal women. The Journal of Steroid Biochemistry and Molecular Biology, 2021. 209: p. 105849. [DOI:10.1016/j.jsbmb.2021.105849]
98. Si Z, et al., Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomedicine & Pharmacotherapy, 2019. 114: p. 108765. [DOI:10.1016/j.biopha.2019.108765]
99. Panina YA, et al., Plasticity of adipose tissue-derived stem cells and regulation of angiogenesis. Frontiers in physiology, 2018. 9: p. 1656. [DOI:10.3389/fphys.2018.01656]
100. Hoang V, et al., Adipose-derived mesenchymal stem cell therapy for the management of female sexual dysfunction: Literature reviews and study design of a clinical trial. Frontiers in cell and developmental biology, 2022. 10. [DOI:10.3389/fcell.2022.956274]
101. Lendeckel S, et al., Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. Journal of Cranio-Maxillofacial Surgery, 2004. 32(6): p. 370-373. [DOI:10.1016/j.jcms.2004.06.002]
102. Yang J-A, et al., Potential application of adipose-derived stem cells and their secretory factors to skin: discussion from both clinical and industrial viewpoints. Expert opinion on biological therapy, 2010. 10(4): p. 495-503. [DOI:10.1517/14712591003610598]
103. Ra JC, et al., A prospective, nonrandomized, no placebo-controlled, phase I/II clinical trial assessing the safety and efficacy of intramuscular injection of autologous adipose tissue-derived mesenchymal stem cells in patients with severe Buerger's disease. Cell Medicine, 2017. 9(3): p. 87-102. [DOI:10.3727/215517916X693069]
104. Lee RH, et al., Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cellular physiology and biochemistry, 2004. 14(4-6): p. 311-324. [DOI:10.1159/000080341]
105. Choudhery MS, et al., Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. Journal of translational medicine, 2014. 12(1): p. 1-14. [DOI:10.1186/1479-5876-12-8]
106. Damous LL, et al., Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries? Reproductive Biology and Endocrinology, 2015. 13(1): p. 1-11. [DOI:10.1186/s12958-015-0104-2]
107. Terraciano P, et al., Cell therapy for chemically induced ovarian failure in mice. Stem Cells International, 2014. 2014. [DOI:10.1155/2014/720753]
108. Sun M, et al., Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem cell research & therapy, 2013. 4(4): p. 1-9. [DOI:10.1186/scrt231]
109. Su J, et al., Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency. Human Reproduction, 2016. 31(5): p. 1075-1086. [DOI:10.1093/humrep/dew041]
110. Kilic S, et al., Effect of stem cell application on Asherman syndrome, an experimental rat model. Journal of Assisted Reproduction and Genetics, 2014. 31(8): p. 975-982. [DOI:10.1007/s10815-014-0268-2]
111. Mohammadi M, et al., Mesenchymal stem cell: a new horizon in cancer gene therapy. Cancer gene therapy, 2016. 23(9): p. 285-286. [DOI:10.1038/cgt.2016.35]
112. He Y, et al., The therapeutic potential of bone marrow mesenchymal stem cells in premature ovarian failure. Stem cell research & therapy, 2018. 9(1): p. 1-7. [DOI:10.1186/s13287-018-1008-9]
113. Phinney DG and Prockop DJ, Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem cells, 2007. 25(11): p. 2896-2902. [DOI:10.1634/stemcells.2007-0637]
114. Wang S, et al., The therapeutic potential of umbilical cord mesenchymal stem cells in mice premature ovarian failure. Biomed research international, 2013. 2013. [DOI:10.1155/2013/690491]
115. Augello A, Kurth TB, and De Bari C, Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. Eur Cell Mater, 2010. 20(121): p. e33. [DOI:10.22203/eCM.v020a11]
116. Sanders JE, et al., Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood, 1996. 87(7): p. 3045-3052. [DOI:10.1182/blood.V87.7.3045.bloodjournal8773045]
117. Li B, et al., Hypoxia-induced mesenchymal stromal cells exhibit an enhanced therapeutic effect on radiation-induced lung injury in mice due to an increased proliferation potential and enhanced antioxidant ability. Cellular Physiology and Biochemistry, 2017. 44(4): p. 1295-1310. [DOI:10.1159/000485490]
118. Ding L, et al., Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility. Science China Life Sciences, 2018. 61(12): p. 1554-1565. [DOI:10.1007/s11427-017-9272-2]
119. Sun H, et al., Partial regeneration of uterine horns in rats through adipose-derived stem cell sheets. Biology of Reproduction, 2018. 99(5): p. 1057-1069. [DOI:10.1093/biolre/ioy121]
120. Zhang D, et al., Potential spermatogenesis recovery with bone marrow mesenchymal stem cells in an azoospermic rat model. International journal of molecular sciences, 2014. 15(8): p. 13151-13165. [DOI:10.3390/ijms150813151]
121. Zahkook S, et al., Mesenchymal stem cells restore fertility in induced azoospermic rats following chemotherapy administration. J Reprod Infertil, 2014. 5(2): p. 50-57.
122. Vahdati A, et al., The regenerative effect of bone marrow-derived stem cells in spermatogenesis of infertile hamster. World journal of plastic surgery, 2017. 6(1): p. 18.
123. Liu H, et al., Induction of human adipose-derived mesenchymal stem cells into germ lineage using retinoic acid. Cellular reprogramming, 2018. 20(2): p. 127-134. [DOI:10.1089/cell.2017.0063]
124. Zhao Y, et al., Mesenchymal stem cells derived exosomal miR-323-3p promotes proliferation and inhibits apoptosis of cumulus cells in polycystic ovary syndrome (PCOS). 2019. 47(1): p. 3804-3813. [DOI:10.1080/21691401.2019.1669619]
125. Xiao B, et al., Exosomal transfer of bone marrow mesenchymal stem cell-derived miR-340 attenuates endometrial fibrosis. 2019. 8(5): p. bio039958. [DOI:10.1242/bio.039958]
126. Liang L, et al., Exosomes derived from human umbilical cord mesenchymal stem cells repair injured endometrial epithelial cells. 2020. 37(2): p. 395-403. [DOI:10.1007/s10815-019-01687-4]
127. Zhao S, et al., Exosomes derived from adipose mesenchymal stem cells restore functional endometrium in a rat model of intrauterine adhesions. 2020. 27(6): p. 1266-1275. [DOI:10.1007/s43032-019-00112-6]
128. Xin L, et al., A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation. 2020. 113: p. 252-266. [DOI:10.1016/j.actbio.2020.06.029]
129. Yao Y, et al., Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium. 2019. 10(1): p. 1-17. [DOI:10.1186/s13287-019-1332-8]
130. Saribas GS, et al., Effects of uterus derived mesenchymal stem cells and their exosomes on Asherman's syndrome. 2020. 122(1): p. 151465. [DOI:10.1016/j.acthis.2019.151465]
131. Perrini C, et al., Microvesicles secreted from equine amniotic-derived cells and their potential role in reducing inflammation in endometrial cells in an in-vitro model. 2016. 7(1): p. 1-15. [DOI:10.1186/s13287-016-0429-6]
132. Yang Z, et al., Therapeutic effects of human umbilical cord mesenchymal stem cell-derived microvesicles on premature ovarian insufficiency in mice. 2019. 10(1): p. 1-12. [DOI:10.1186/s13287-019-1327-5]
133. Sun L, et al., Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. 2017. 7(1): p. 1-13. [DOI:10.1038/s41598-017-02786-x]
134. Zhang J, et al., The protective effects of human umbilical cord mesenchymal stem cell-derived extracellular vesicles on cisplatin-damaged granulosa cells. 2020. 59(4): p. 527-533. [DOI:10.1016/j.tjog.2020.05.010]
135. Sun B, et al., miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis. 2019. 10(1): p. 1-9. [DOI:10.1186/s13287-019-1442-3]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به {مجله تحقيقات پزشكي صارم} می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | {Sarem Journal of Medicine Research}

Designed & Developed by : Yektaweb