Volume 3, Issue 3 (2018)                   SJMR 2018, 3(3): 177-183 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akhtarkhavari T, Behjati F. Role of Epigenetics in Male Infertility. SJMR 2018; 3 (3) :177-183
URL: http://saremjrm.com/article-1-74-en.html
1- Sarem Cell Research Center (SCRC), Sarem Women’s Hospital, Tehran, Iran
2- “Sarem Fertility & Infertility Research Center (SAFIR)” and “Sarem Cell Research Center (SCRC), Sarem Women’s Hospital , fbehjati@gmail.com
Abstract:   (5861 Views)

Introduction: Human male infertility is a complex medical condition within which not only the genetic factors but also, epigenetic factors play an important role. For many years the contribution of epimutations was neglected and in comparison with other relying causes of male infertility, the field of epigenetics is rather young and more studies are still needed to explore various effects of epigenetic alterations on human male infertility, consequently a review study was performed.

Material and methods:This study was done on more than 50 papers that were indexed by Pubmed before June 2016. The literature review was conducted by the following keywords: Epigenetic male infertility, epimutation male infertility, epigenetic azoospermia, epigenetic oligospermia, epidrug male infertility, and next generation sequencing male infertility.

Conclusion: Recent studies have identified various epigenetic factors that involved in male infertility including abnormal histone modifications, aberrant chromatin remodeling, irregular microRNAs, unusual protamine modifications and hypermethylation in promoter region of several genes. Current available medications are not capable of solving all cases of infertile men specially those who are reported as idiopathic cases that accounts for 15 to 25 percent of all patients. Epigenetics is one of the recently identified causes of this condition and understanding the exact mechanism of epigenetic factors in male infertility enables us to develop new epidrugs for this condition in the near future.

Full-Text [PDF 492 kb]   (2712 Downloads) |   |   Full-Text (HTML)  (1647 Views)  
Article Type: Analytical Review | Subject: Reproduction
Received: 2017/04/4 | Accepted: 2017/10/21 | Published: 2018/11/22

References
1. Tahmasbpour E, Balasubramanian D, Agarwal A. A multi-faceted approach to understanding male infertility: Gene mutations, molecular defects and assisted reproductive techniques (ART). J Assist Reprod Genet. 2014;31(9):1115-37. [Link] [DOI:10.1007/s10815-014-0280-6] [PMID] [PMCID]
2. Gunes S, Arslan MA, Hekim GN, Asci R. The role of epigenetics in idiopathic male infertility. J Assist Reprod Genet. 2016;33(5):553-69. [Link] [DOI:10.1007/s10815-016-0682-8] [PMID] [PMCID]
3. Rajender S, Avery K, Agarwal A. Epigenetics, spermatogenesis and male infertility. Mutat Res. 2011;727(3):62-71. [Link] [DOI:10.1016/j.mrrev.2011.04.002] [PMID]
4. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247-57. [Link] [DOI:10.1016/S0092-8674(00)81656-6]
5. Nimura K, Ishida C, Koriyama H, Hata K, Yamanaka S, Li E, et al. Dnmt3a2 targets endogenous Dnmt3L to ES cell chromatin and induces regional DNA methylation. Genes Cells. 2006;11(10):1225-37. [Link] [DOI:10.1111/j.1365-2443.2006.01012.x] [PMID]
6. Ait-Si-Ali S, Guasconi V, Fritsch L, Yahi H, Sekhri R, Naguibneva I, et al. A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells. Eur Mol Biol Organ J. 2004;23(3):605-15. [Link] [DOI:10.1038/sj.emboj.7600074] [PMID] [PMCID]
7. Tachibana M, Nozaki M, Takeda N, Shinkai Y. Functional dynamics of H3K9 methylation during meiotic prophase progression. Eur Mol Biol Organ J. 2007;26(14):3346-59. [Link] [DOI:10.1038/sj.emboj.7601767] [PMID] [PMCID]
8. Klenova EM, Morse HC, 3rd, Ohlsson R, Lobanenkov VV. The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Semin Cancer Biol. 2002;12(5):399-414. [Link] [DOI:10.1016/S1044-579X(02)00060-3]
9. Loukinov DI, Pugacheva E, Vatolin S, Pack SD, Moon H, Chernukhin I, et al. BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci U S A. 2002;99(10):6806-11. [Link] [DOI:10.1073/pnas.092123699] [PMID] [PMCID]
10. Rimoin DL, Pyeritz RE, Korf B. Emery and Rimoin's principles and practice of medical genetics. Amsterdam: Elsevier Science; 2013. [Link]
11. Zamudio NM, Chong S, O'Bryan MK. Epigenetic regulation in male germ cells. Reproduction. 2008;136(2):131-46. [Link] [DOI:10.1530/REP-07-0576] [PMID]
12. Stuppia L, Franzago M, Ballerini P, Gatta V, Antonucci I. Epigenetics and male reproduction: The consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin Epigenetics. 2015;7:105-20. [Link] [DOI:10.1186/s13148-015-0155-4]
13. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417-35. [Link] [DOI:10.1093/humupd/dml009] [PMID]
14. Oliva R, Bazett-Jones D, Mezquita C, Dixon GH. Factors affecting nucleosome disassembly by protamines in vitro. Histone hyperacetylation and chromatin structure, time dependence, and the size of the sperm nuclear proteins. J Biol Chem. 1987;262(35):17016-25. [Link] [PMID]
15. Oliva R, Dixon GH. Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog Nucleic Acid Res Mol Biol. 1991;40:25-94. [Link] [DOI:10.1016/S0079-6603(08)60839-9]
16. Dada R, Kumar M, Jesudasan R, Fernández JL, Gosálvez J, Agarwal A. Epigenetics and its role in male infertility. J Assist Reprod Genet. 2012;29(3):213-23. [Link] [DOI:10.1007/s10815-012-9715-0] [PMID] [PMCID]
17. Lambard S, Galeraud-Denis I, Martin G, Levy R, Chocat A, Carreau S. Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: Relationship to sperm motility and capacitation. Mol Hum Reprod. 2004;10(7):535-41. [Link] [DOI:10.1093/molehr/gah064] [PMID]
18. Khazamipour N, Noruzinia M, Fatehmanesh P, Keyhanee M, Pujol P. MTHFR promoter hypermethylation in testicular biopsies of patients with non-obstructive azoospermia: The role of epigenetics in male infertility. Hum Reprod. 2009;24(9):2361-4. [Link] [DOI:10.1093/humrep/dep194] [PMID]
19. Wu W, Shen O, Qin Y, Niu X, Lu C, Xia Y, et al. Idiopathic male infertility is strongly associated with aberrant promoter methylation of methylenetetrahydrofolate reductase (MTHFR). PLoS One. 2010;5(11):e13884. [Link] [DOI:10.1371/journal.pone.0013884] [PMID] [PMCID]
20. Chan D, Cushnie DW, Neaga OR, Lawrance AK, Rozen R, Trasler JM. Strain-specific defects in testicular development and sperm epigenetic patterns in 5,10-methylenetetrahydrofolate reductase-deficient mice. Endocrinology. 2010;151(7):3363-73. [Link] [DOI:10.1210/en.2009-1340] [PMID]
21. Houshdaran S, Cortessis VK, Siegmund K, Yang A, Laird PW, Sokol RZ. Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One. 2007;2(12):e1289. [Link] [DOI:10.1371/journal.pone.0001289] [PMID] [PMCID]
22. Kumar R, Venkatesh S, Kumar M, Tanwar M, Shasmsi MB, Kumar R, et al. Oxidative stress and sperm mitochondrial DNA mutation in idiopathic oligoasthenozoospermic men. Indian J Biochem Biophys. 2009;46(2):172-7. [Link] [PMID]
23. Poplinski A, Tuttelmann F, Kanber D, Horsthemke B, Gromoll J. Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1. Int J Androl 2010;33(4):642-9. [Link] [PMID]
24. Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. 2010;94(5):1728-33. [Link] [DOI:10.1016/j.fertnstert.2009.09.010] [PMID]
25. Kobayashi H, Sato A, Otsu E, Hiura H, Tomatsu C, Utsunomiya T, et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet. 2007;16(21):2542-51. [Link] [DOI:10.1093/hmg/ddm187] [PMID]
26. Li JY, Lees-Murdock DJ, Xu GL, Walsh CP. Timing of establishment of paternal methylation imprints in the mouse. Genomics. 2004;84(6):952-60. [Link] [DOI:10.1016/j.ygeno.2004.08.012] [PMID]
27. Baarends WM, Wassenaar E, van der Laan R, Hoogerbrugge J, Sleddens-Linkels E, Hoeijmakers JH, et al. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol Cell Biol. 2005;25(3):1041-53. [Link] [DOI:10.1128/MCB.25.3.1041-1053.2005] [PMID] [PMCID]
28. Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature. 2007;450(7166):119-23. [Link] [DOI:10.1038/nature06236] [PMID]
29. Wu JY, Ribar TJ, Cummings DE, Burton KA, McKnight GS, Means AR. Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4. Nat Genet. 2000;25(4):448-52. [Link] [DOI:10.1038/78153] [PMID]
30. Aoki VW, Emery BR, Liu L, Carrell DT. Protamine Levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27(6):890-8. [Link] [DOI:10.2164/jandrol.106.000703] [PMID]
31. Moghbelinejad S, Najafipour R, Hashjin AS. Comparison of Protamine 1 to Protamine 2 mRNA ratio and YBX2 gene mRNA content in testicular tissue of Fertile and Azoospermic Men. Int J Fertil Steril. 2015;9(3):338-45. [Link] [PMID] [PMCID]
32. Li C, Zheng L, Wang C, Zhou X. Absence of nerve growth factor and comparison of tyrosine kinase receptor A levels in mature spermatozoa from Oligoasthenozoospermic, Asthenozoospermic and Fertile men. Clin Chim Acta. 2010;411(19-20):1482-6. [Link] [DOI:10.1016/j.cca.2010.06.002] [PMID]
33. Guo X, Gui YT, Tang AF, Lu LH, Gao X, Cai ZM. Differential expression of VASA gene in ejaculated Spermatozoa from Normozoospermic men and patients with Oligozoospermia. Asian J Androl. 2007;9(3):339-44. [Link] [DOI:10.1111/j.1745-7262.2007.00253.x] [PMID]
34. Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, et al. A survey of small RNAs in human sperm. Hum Reprod. 2011;26(12):3401-12. [Link] [DOI:10.1093/humrep/der329] [PMID] [PMCID]
35. Papaioannou MD, Nef S. MicroRNAs in the testis: Building up male fertility. J Androl. 2010;31(1):26-33. [Link] [DOI:10.2164/jandrol.109.008128] [PMID]
36. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259-69. [Link] [DOI:10.1038/nrc1840] [PMID]
37. Bjork JK, Sandqvist A, Elsing AN, Kotaja N, Sistonen L. The miR-18a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development. 2010;137(19):3177-84. [Link] [DOI:10.1242/dev.050955] [PMID]
38. Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I, et al. MicroRNA expression detected by oligonucleotide microarrays: System establishment and expression profiling in human tissues. Genome Res. 2004;14(12):2486-94. [Link] [DOI:10.1101/gr.2845604] [PMID] [PMCID]
39. Yu Z, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the Posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod. 2005;73(3):427-33. [Link] [DOI:10.1095/biolreprod.105.040998] [PMID]
40. Novotny GW, Sonne SB, Nielsen JE, Jonstrup SP, Hansen MA, Skakkebaek NE, et al. Translational repression of E2F1 mRNA in arcinoma in situ and normal testis correlates with expression of the miR-17-92 cluster. Cell Death Differ. 2007;14(4):879-82. [Link] [DOI:10.1038/sj.cdd.4402090] [PMID]
41. Huang S, Li H, Ding X, Xiong C. Presence and characterization of cell-free seminal RNA in healthy individuals: Implications for noninvasive disease diagnosis and gene expression studies of the male reproductive system. Clin Chem. 2009;55(11):1967-76. [Link] [DOI:10.1373/clinchem.2009.131128] [PMID]
42. Klattenhoff C, Theurkauf W. Biogenesis and germline functions of piRNAs. Development. 2008;135(1):3-9. [Link] [DOI:10.1242/dev.006486] [PMID]
43. Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 2001;107(3):323-37. [Link] [DOI:10.1016/S0092-8674(01)00542-6]
44. Glaser S, Lubitz S, Loveland KL, Ohbo K, Robb L, Schwenk F, et al. The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin. 2009;2(1):5. [Link] [DOI:10.1186/1756-8935-2-5] [PMID] [PMCID]
45. Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature. 2005;438(7066):374-8. [Link] [DOI:10.1038/nature04112] [PMID]
46. Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, et al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature. 2009;461(7262):415-8. [Link] [DOI:10.1038/nature08315] [PMID]
47. An JY, Kim EA, Jiang Y, Zakrzewska A, Kim DE, Lee MJ, et al. UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proc Natl Acad Sci USA. 2010;107(5):1912-7. [Link] [DOI:10.1073/pnas.0910267107] [PMID] [PMCID]
48. Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev cell. 2010;18(3):371-84. [Link] [DOI:10.1016/j.devcel.2010.01.010] [PMID] [PMCID]
49. De La Fuente R, Baumann C, Fan T, Schmidtmann A, Dobrinski I, Muegge K. Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells. Nat Cell Biol. 2006;8(12):1448-54. [Link] [DOI:10.1038/ncb1513] [PMID]
50. Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature. 2004;429(6994):900-3. [Link] [DOI:10.1038/nature02633] [PMID]
51. Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M, Kohara Y, et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet. 2007;16(19):2272-80. [Link] [DOI:10.1093/hmg/ddm179] [PMID]
52. Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science. 2007;316(5825):744-7. [Link] [DOI:10.1126/science.1142612] [PMID]
53. Deng W, Lin H. MIVI, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell. 2002;2(6):819-30. [Link] [DOI:10.1016/S1534-5807(02)00165-X]
54. Carmell MA, Girard A, van de Kant HJ, Bourc'his D, Bestor TH, de Rooij DG, et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell. 2007;12(4):503-14. [Link] [DOI:10.1016/j.devcel.2007.03.001] [PMID]
55. Shang E, Nickerson HD, Wen D, Wang X, Wolgemuth DJ. The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation. Development. 2007;134(19):3507-15. [Link] [DOI:10.1242/dev.004481] [PMID]
56. Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: Strength of effects and biological basis. Int J Epidemiol. 2002;31(6):1235-9. [Link] [DOI:10.1093/ije/31.6.1235]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | {Sarem Journal of Medical Research}

Designed & Developed by : Yektaweb