Volume 7, Issue 1 (2022)                   SJMR 2022, 7(1): 41-53 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pashootan N, Derogar P, Mohammadi S, Sadat Shirazi S R, Moharram T. The effect of chemotherapy drugs on male germ cells and fertility in men. SJMR 2022; 7 (1) : 5
URL: http://saremjrm.com/article-1-258-en.html
1- Sarem gynecology, Obstetrics and Infertilty Research Center, Sarem Women's Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran. , saremcrc@gmail.com
2- Sarem gynecology, Obstetrics and Infertilty Research Center, Sarem Women's Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran.
Abstract:   (2203 Views)
Introduction: During the past few decades, as a result of progress in the diagnosis and treatment, the number of cancer survivors has increased. Cancer treatments often have many side effects, depending on the patient's age, type of cancer, treatment regimen, and dose of medication. One of the most important complications following treatment, especially in testicular and prostate cancers in men, is infertility. Testicular tissue is very sensitive to chemotherapy and radiotherapy. The harmful effects of chemotherapy on germ cells depend on many factors, including the initial parameters of semen, method of drug administration, the type and dose of chemotherapy regimens, and the stage of spermatogenesis at the time of drug administration. Unfortunately, clinical researches in humans are difficult because cancer treatments are often a combination of chemotherapy and radiotherapy.
Conclusion: Hence, experimental studies in animal models are important in order to define the mechanism involved in the toxicity effects on gonads and the drugs used. This would help the evaluation of the effects of drug administration alone or in combination on mature and immature testes. These data will provide cancer patients with better information, after recovery, regarding the risks of chemotherapy for their future fertility. It would also offer fertility options for the preservation of their fertility. The aim of this study was to evaluate the effects and side complications of some chemotherapy drugs on fertility in men.

Article number: 5
Full-Text [PDF 960 kb]   (343 Downloads)    
Article Type: Analytical Review | Subject: Sterility
Received: 2023/02/19 | Accepted: 2023/02/19 | Published: 2023/02/19

References
1. 1. Vakalopoulos I, et al., Impact of cancer and cancer treatment on male fertility. Hormones. 2015;14(4):579-89. [DOI:10.14310/horm.2002.1620]
2. Simorangkir DR, et al.,. Prepubertal expansion of dark and pale type A spermatogonia in the rhesus monkey (Macaca mulatta) results from proliferation during infantile and juvenile development in a relatively gonadotropin independent manner. Biol Reprod. 2005;73(6):1109-15. [DOI:10.1095/biolreprod.105.044404]
3. Van Alphen MMA, Van de Kant HJG, De Rooij DG. Repopulation of the seminiferous epithelium of the rhesus monkey after X irradiation. Radiat Res. 1988;113(3):487-500. [DOI:10.2307/3577245]
4. Craft I, Bennett V, Nicholson N. Fertilising ability of testicular spermatozoa. Lancet. 1993; 342(8875): 864. [DOI:10.1016/0140-6736(93)92722-6]
5. Thomson AB, et al., Semen quality and spermatozoal DNA integrity in survivors of childhood cancer: a case-control study. Lancet. 2002; 360(9330): 361-7. [DOI:10.1016/S0140-6736(02)09606-X]
6. Steliarova-Foucher E, et al., International incidence of childhood cancer, 2001-10: a population-based registry study. Lancet Oncol. 2017;18(6):719-31. [DOI:10.1016/S1470-2045(17)30186-9]
7. van Casteren NJ, et al., Effect of childhood cancer treatment on fertility markers in adult male long‐term survivors. Pediatr Blood Cancer. 2009;52(1):108-12. [DOI:10.1002/pbc.21780]
8. Kenney LB, et al., High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer. 2001;91(3):613-21. https://doi.org/10.1002/1097-0142(20010201)91:3<613::AID-CNCR1042>3.0.CO;2-R [DOI:10.1002/1097-0142(20010201)91:33.0.CO;2-R]
9. Green DM, et al., Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study. Lancet Oncol. 2014;15(11):1215-23. [DOI:10.1016/S1470-2045(14)70408-5]
10. Poganitsch-Korhonen M, et al., Decreased spermatogonial quantity in prepubertal boys with leukaemia treated with alkylating agents. Leukemia. 2017;31(6):1460-3. [DOI:10.1038/leu.2017.76]
11. Allen CM, et al., How does chemotherapy treatment damage the prepubertal testis? Reproduction. 2018;156(6):R209-33. [DOI:10.1530/REP-18-0221]
12. Jahnukainen K, et al., Testicular function and fertility preservation in male cancer patients. Best Pract Res Clin Endocrinol Metab. 2011;25(2):287-302. [DOI:10.1016/j.beem.2010.09.007]
13. Lirdi LC, et al., Amifostine protective effect on cisplatin‐treated rat testis. Anat Rec Adv Integr Anat Evol Biol Adv Integr Anat Evol Biol. 2008;291(7):797-808. [DOI:10.1002/ar.20693]
14. Favareto APA, et al., Persistent impairment of testicular histology and sperm motility in adult rats treated with cisplatin at peri‐puberty. Basic Clin Pharmacol Toxicol. 2011;109(2):85-96. [DOI:10.1111/j.1742-7843.2011.00688.x]
15. Heinrich A, DeFalco T. Essential roles of interstitial cells in testicular development and function. Andrology. 2020;8(4):903-14. [DOI:10.1111/andr.12703]
16. Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972;52(1):198-236. [DOI:10.1152/physrev.1972.52.1.198]
17. Kanatsu-Shinohara M, Shinohara T. Spermatogonial stem cell self-renewal and development. Annu Rev Cell Dev Biol. 2013;29:163-87. [DOI:10.1146/annurev-cellbio-101512-122353]
18. Chemes HE. Infancy is not a quiescent period of testicular development. Int J Androl. 2001;24(1):2-7. [DOI:10.1046/j.1365-2605.2001.00260.x]
19. Green DM, et al., The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer. 2014;61(1):53-67. [DOI:10.1002/pbc.24679]
20. Romerius P, et al., High risk of azoospermia in men treated for childhood cancer. Int J Androl. 2011;34(1):69-76. [DOI:10.1111/j.1365-2605.2010.01058.x]
21. Romerius P, et al., Sperm DNA integrity in men treated for childhood cancer. Clin Cancer Res. 2010;16(15):3843-50. [DOI:10.1158/1078-0432.CCR-10-0140]
22. Paoli D, et al., Spermatogenesis in Hodgkin's lymphoma patients: a retrospective study of semen quality before and after different chemotherapy regimens. Hum Reprod. 2016;31(2):263-72.
23. Meistrich ML, et al., Impact of cyclophosphamide on long‐term reduction in sperm count in men treated with combination chemotherapy for Ewing and soft tissue sarcomas. Cancer. 1992;70(11):2703-12. https://doi.org/10.1002/1097-0142(19921201)70:11<2703::AID-CNCR2820701123>3.0.CO;2-X [DOI:10.1002/1097-0142(19921201)70:113.0.CO;2-X]
24. Marmor D, Duyck F. Male reproductive potential after MOPP therapy for Hodgkin's disease: a long‐term survey. Andrologia. 1995;27(2):99-106. [DOI:10.1111/j.1439-0272.1995.tb01078.x]
25. Tal R, et al., Follow-up of sperm concentration and motility in patients with lymphoma. Hum Reprod. 2000;15(9):1985-8. [DOI:10.1093/humrep/15.9.1985]
26. Calamera JC, et al., Biochemical changes of the human semen produced by chlorambucil, testosterone propionate and human chorionic gonadotropin administration. Andrologia. 1979;11(1):43-50. [DOI:10.1111/j.1439-0272.1979.tb02158.x]
27. Bieber AM, et al., Effects of chemotherapeutic agents for testicular cancer on the male rat reproductive system, spermatozoa, and fertility. J Androl. 2006;27(2):189-200. [DOI:10.2164/jandrol.05103]
28. Bieber A. Effects of chemotherapeutic agents for testicular cancer on male rat reproductive organs and spermatozoal numbers, motility, and morphology. 2005;
29. Vaisheva F, et al., Effects of the chemotherapeutic Agents for Non‐Hodgkin Lymphoma, Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone (CHOP), on the male rat reproductive system and progeny outcome. J Androl. 2007;28(4):578-87. [DOI:10.2164/jandrol.106.002428]
30. Kato M, et al., Sperm motion analysis in rats treated with adriamycin and its applicability to male reproductive toxicity studies. J Toxicol Sci. 2001;26(1):51-9. [DOI:10.2131/jts.26.51]
31. O'Flaherty C, et al., Impact of chemotherapeutics and advanced testicular cancer or Hodgkin lymphoma on sperm deoxyribonucleic acid integrity. Fertil Steril. 2010;94(4):1374-9. [DOI:10.1016/j.fertnstert.2009.05.068]
32. O'flaherty CM, et al., Sperm chromatin structure components are differentially repaired in cancer survivors. J Androl. 2012;33(4):629-36. [DOI:10.2164/jandrol.111.015388]
33. Shnorhavorian M, et al., Differential DNA methylation regions in adult human sperm following adolescent chemotherapy: potential for epigenetic inheritance. PLoS One. 2017;12(2):e0170085. [DOI:10.1371/journal.pone.0170085]
34. Nayak G, et al., Sperm abnormalities induced by pre‐pubertal exposure to cyclophosphamide are effectively mitigated by Moringa oleifera leaf extract. Andrologia. 2016;48(2):125-36. [DOI:10.1111/and.12422]
35. Vendramini V, Robaire B, Miraglia SM. Amifostine-doxorubicin association causes long-term prepubertal spermatogonia DNA damage and early developmental arrest. Hum Reprod. 2012;27(8):2457-66. [DOI:10.1093/humrep/des159]
36. Stukenborg J-B, et al., Cancer treatment in childhood and testicular function: the importance of the somatic environment. Endocr Connect. 2018;7(2):R69-87. [DOI:10.1530/EC-17-0382]
37. Heikens J, et al., Irreversible gonadal damage in male survivors of pediatric Hodgkin's disease. Cancer Interdiscip Int J Am Cancer Soc. 1996;78(9):2020-4. https://doi.org/10.1002/(SICI)1097-0142(19961101)78:9<2020::AID-CNCR25>3.0.CO;2-Y [DOI:10.1002/(SICI)1097-0142(19961101)78:93.0.CO;2-Y]
38. Talbot JA, et al., Luteinizing hormone pulsatility in men with damage to the germinal epithelium. Int J Androl. 1990;13(3):223-31. [DOI:10.1111/j.1365-2605.1990.tb00980.x]
39. Isaksson S, et al., High risk of hypogonadism in young male cancer survivors. Clin Endocrinol (Oxf). 2018;88(3):432-41. [DOI:10.1111/cen.13534]
40. Aslani F, et al., Resistance to apoptosis and autophagy leads to enhanced survival in Sertoli cells. MHR Basic Sci Reprod Med. 2017;23(6):370-80. [DOI:10.1093/molehr/gax022]
41. Tremblay AR, Delbes G. In vitro study of doxorubicin-induced oxidative stress in spermatogonia and immature Sertoli cells. Toxicol Appl Pharmacol. 2018;348:32-42. [DOI:10.1016/j.taap.2018.04.014]
42. Brilhante O, et al., Late morfofunctional alterations of the Sertoli cell caused by doxorubicin administered to prepubertal rats. Reprod Biol Endocrinol. 2012;10(1):1-16. [DOI:10.1186/1477-7827-10-79]
43. Stumpp T, Freymuller E, Miraglia SM. Sertoli cell morphological alterations in albino rats treated with etoposide during prepubertal phase. Microsc Microanal. 2008;14(3):225-35. [DOI:10.1017/S1431927608080318]
44. Stumpp T, Freymüller E, Miraglia SM. Sertoli cell function in albino rats treated with etoposide during prepubertal phase. Histochem Cell Biol. 2006;126(3):353-61. [DOI:10.1007/s00418-006-0168-3]
45. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-78. [DOI:10.1016/j.ejphar.2014.07.025]
46. Shokri V, et al., Evaluating the effects of acacetin versus a low dose of cisplatin drug on male reproductive system and kidney in mice: with emphasis on inflammation process. Andrologia. 2020;52(1):e13444. [DOI:10.1111/and.13444]
47. Kata FS. Effect of Cisplatin drug on sperm characterizes, spermatogenesis and sex hormones levels of male mice Mus musculus L. J Basrah Res. 2013;39(2A):112-24.
48. Brozovic A, Ambriović-Ristov A, Osmak M. The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit Rev Toxicol. 2010;40(4):347-59. [DOI:10.3109/10408441003601836]
49. Liu M, Hales BF, Robaire B. Effects of four chemotherapeutic agents, bleomycin, etoposide, cisplatin, and cyclophosphamide, on DNA damage and telomeres in a mouse spermatogonial cell line. Biol Reprod. 2014;90(4):71-2. [DOI:10.1095/biolreprod.114.117754]
50. Kohsaka T, et al., Efficacy of relaxin for cisplatin-induced testicular dysfunction and epididymal spermatotoxicity. Basic Clin Androl. 2020;30(1):1-13. [DOI:10.1186/s12610-020-0101-y]
51. Smart E, et al., Chemotherapy drugs cyclophosphamide, cisplatin and doxorubicin induce germ cell loss in an in vitro model of the prepubertal testis. Sci Rep. 2018;8(1):1-15. [DOI:10.1038/s41598-018-19761-9]
52. Yadav YC. Effect of cisplatin on pancreas and testes in Wistar rats: biochemical parameters and histology. Heliyon. 2019;5(8):e02247. [DOI:10.1016/j.heliyon.2019.e02247]
53. Thorn CF, et al., Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440. [DOI:10.1097/FPC.0b013e32833ffb56]
54. Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999;57(7):727-41. [DOI:10.1016/S0006-2952(98)00307-4]
55. Akinjo OO, Gant TW, Marczylo EL. Perturbation of epigenetic processes by doxorubicin in the mouse testis. Toxicol Res (Camb). 2016;5(4):1229-43. [DOI:10.1039/C6TX00078A]
56. Sakai K, et al., Effects of doxorubicin on sperm DNA methylation in mouse models of testicular toxicity. Biochem Biophys Res Commun. 2018;498(3):674-9. [DOI:10.1016/j.bbrc.2018.03.044]
57. Ahmed ZA, et al., Effects of quercetin, sitagliptin alone or in combination in testicular toxicity induced by doxorubicin in rats. Drug Des Devel Ther. 2019;13:3321. [DOI:10.2147/DDDT.S222127]
58. Özyilmaz Yay N, Şener G, Ercan F. Resveratrol treatment reduces apoptosis and morphological alterations in cisplatin induced testis damage. J Res Pharm. 2019;23(4). [DOI:10.12991/jrp.2019.170]
59. Haq AA, Nigar S, Rehman D. Potential of ascorbic acid as antioxidant on chemotherapeutic agent induced change in morphology of testes. J Pak Med Assoc. 2017;67(4):586-9.
60. Cabral REL, et al., Carnitine partially protects the rat testis against the late damage produced by doxorubicin administered during pre‐puberty. Andrology. 2014;2(6):931-42. [DOI:10.1111/andr.279]
61. Horwitz SB. Taxol (paclitaxel): mechanisms of action. Ann Oncol Off J Eur Soc Med Oncol. 1994;5:S3-6.
62. Sariözkan S, et al., Effects of Cinnamon (C. zeylanicum) Bark oil against taxanes-induced damages in sperm quality, testicular and epididymal oxidant/antioxidant balance, testicular apoptosis, and sperm DNA integrity. Nutr Cancer. 2016;68(3):481-94. [DOI:10.1080/01635581.2016.1152384]
63. Chatzidarellis E, et al., Effects of taxane-based chemotherapy on inhibin B and gonadotropins as biomarkers of spermatogenesis. Fertil Steril. 2010;94(2):558-63. [DOI:10.1016/j.fertnstert.2009.03.068]
64. D'souza UJ, Narayana K. Induction of seminiferous tubular atrophy by single dose of 5-fluorouracil (5-FU) in Wistar rats. Indian J Physiol Pharmacol. 2001;45(1):87-94.
65. Mao W-W, et al., Early morphological changes in the mouse testis induced by 5-fluorouracil. Zhonghua nan ke xue= Natl J Androl. 2009;15(12):1064-7.
66. Rao KS. 5-Fluorouracil (5-FU) induces the formation of giant cells and sloughin g of seminiferous epithelium in the rat testis. Indian J Physiol Pharmacol. 2000;44(3):317-22.
67. Takizawa S, Horii I. Endocrinological assessment of toxic effects on the male reproductive system in rats treated with 5-fluorouracil for 2 or 4 weeks. J Toxicol Sci. 2002;27(1):49-56. [DOI:10.2131/jts.27.49]
68. Hall AG, Tilby MJ. Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of haematological malignancies. Blood Rev. 1992;6(3):163-73. [DOI:10.1016/0268-960X(92)90028-O]
69. Oyagbemi AA, et al., Gallic acid protects against cyclophosphamide‐induced toxicity in testis and epididymis of rats. Andrologia. 2016;48(4):393-401. [DOI:10.1111/and.12459]
70. Al-Salih HA, et al., The Pathological Features of Cyclophosphamide Induced Multi-Organs Toxicity in Male Wister Rats. Sys Rev Pharm. 2020;11(6):45-9. [DOI:10.31838/srp.2020.6.10]
71. Al-Niwehee NA. Effect of Cyclophosphamide Treatment During the Embryonic Period on Fertility of Adult Male Mice. Iraqi J Sci. 2019;60(4):706-14.
72. Nayak G, et al., Ethanolic extract of Moringa oleifera leaves alleviate cyclophosphamide-induced testicular toxicity by improving endocrine function and modulating cell specific gene expression in mouse testis. J Ethnopharmacol. 2020;259:112922. [DOI:10.1016/j.jep.2020.112922]
73. Pryzant RM, et al., Long-term reduction in sperm count after chemotherapy with and without radiation therapy for non-Hodgkin's lymphomas. J Clin Oncol. 1993;11(2):239-47. [DOI:10.1200/JCO.1993.11.2.239]
74. Buchanan JD, Fairley KF, Barrie JU. Return of spermatogenesis after stopping cyclophosphamide therapy. Lancet. 1975;306(7926):156-7. [DOI:10.1016/S0140-6736(75)90059-8]
75. Baumgartner A, et al., Parallel evaluation of doxorubicin‐induced genetic damage in human lymphocytes and sperm using the comet assay and spectral karyotyping. Mutagenesis. 2004;19(4):313-8. [DOI:10.1093/mutage/geh032]
76. Uderzo C, et al., Correlation of gonadal function with histology of testicular biopsies at treatment discontinuation in childhood acute leukemia. Med Pediatr Oncol. 1984;12(2):97-100. [DOI:10.1002/mpo.2950120207]
77. Aubier F, et al., Male gonadal function after chemotherapy for solid tumors in childhood. J Clin Oncol. 1989;7(3):304-9. [DOI:10.1200/JCO.1989.7.3.304]
78. Amin A, Hamza AA. Effects of Roselle and Ginger on cisplatin‐induced reproductive toxicity in rats. Asian J Androl. 2006;8(5):607-12. [DOI:10.1111/j.1745-7262.2006.00179.x]
79. Hamzeh M, et al., Cerium oxide nanoparticles protect cyclophosphamide-induced testicular toxicity in mice. Int J Prev Med. 2019;10. [DOI:10.4103/ijpvm.IJPVM_184_18]
80. Karmakar PC, et al., Chemotherapeutic drugs alter functional properties and proteome of mouse testicular germ cells in vitro. Toxicol Sci. 2018;164(2):465-76. [DOI:10.1093/toxsci/kfy098]
81. Yang H, et al., The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res. 2018;37(1):1-10. [DOI:10.1186/s13046-017-0664-4]
82. Al-Jebari Y, et al., Cancer therapy and risk of congenital malformations in children fathered by men treated for testicular germ-cell cancer: A nationwide register study. PLoS Med. 2019;16(6):e1002816. [DOI:10.1371/journal.pmed.1002816]
83. Nord CB, et al., Cancer therapy and risk of congenital malformations in children fathered by men treated for testicular germ-cell cancer: A nationwide register study. 2019;
84. Meistrich ML. Risks of genetic damage in offspring conceived using spermatozoa produced during chemotherapy or radiotherapy. Andrology. 2020;8(3):545-58. [DOI:10.1111/andr.12740]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | {Sarem Journal of Medical Research}

Designed & Developed by : Yektaweb