Volume 8, Issue 1 (2023)                   SJMR 2023, 8(1): 43-65 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rasoul Panah S, Mohammadi H. The Role of Immunotherapy in the Treatment of Recurrent Miscarriage. SJMR 2023; 8 (1) : 6
URL: http://saremjrm.com/article-1-291-en.html
1- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
Abstract:   (2052 Views)
After implantation, the maternal immune system must tolerate the semi-allogeneic embryo for approximately 280 days of human pregnancy. Regulation and adaptation of the immune system is critical during this period, and any disorder in the balance of the immune system leads to reproductive disorders such as recurrent pregnancy loss. Studies show that immunotherapy plays an important role in improving complications caused by the immune system, including recurrent pregnancy loss, and is used as a critical treatment factor of recurrent miscarriage. Various immunomodulatory agents, namely, corticosteroids, tacrolimus, aspirin and heparin and cyclosporins, intravenous immunoglobulins, intralipids, etc., prevent maternal immune system attack to the semi-allogeneic fetus and production and proliferation of cytokines And harmful cells for pregnancy by exerting anti-inflammatory and immunomodulatory effects with different mechanisms. Also, factors such as G-CSF and GM-CSF have a positive effect on the pregnancy process by recruitment and differentiated leukocytes in the placenta tissue and also helping the placenta grow better. This review examines the types of immunotherapies commonly used in the treatment of recurrent miscarriage and future treatments being developed.
Article number: 6
Full-Text [PDF 740 kb]   (738 Downloads)    
Article Type: Systematical Review | Subject: Sterility
Received: 2023/04/22 | Accepted: 2023/06/8 | Published: 2023/10/30

References
1. :
2. Woolner AM, Raja EA, Bhattacharya S, Danielian P, Bhattacharya S. Inherited susceptibility to miscarriage: a nested case-control study of 31,565 women from an intergenerational cohort. American Journal of
3. Obstetrics and Gynecology. 2020;222(2):168. e1-. e8. [DOI:10.1016/j.ajog.2019.08.013]
4. Rossen LM, Ahrens KA, Branum AM. Trends in risk of pregnancy loss among US women, 1990-2011. Paediatric and perinatal epidemiology. 2018;32(1):19-29. [DOI:10.1111/ppe.12417]
5. Abdolmohammadi-Vahid S, Aghebati-Maleki L, Ahmadian-Heris J, Danaii S, Yousefi M. Recent Advances in Immunotherapeutic Approaches for Recurrent Reproductive Failure. 2022. [DOI:10.5772/intechopen.108869]
6. Frérot M, Lefebvre A, Aho S, Callier P, Astruc K, Aho Glélé LS. What is epidemiology? Changing definitions of epidemiology 1978-2017. PloS one. 2018;13(12):e0208442. [DOI:10.1371/journal.pone.0208442]
7. Dbstet A. WHO: recommended definitions, terminology and format for statistical tables related to the perinatal period and use of a new certificate for cause of perinatal deaths. Acta Obstet Gynecol Scand. 1977;56(3):247-53. [DOI:10.3109/00016347709162009]
8. Medicine PCotASfR. Definitions of infertility and recurrent pregnancy loss. Fertility and sterility. 2008;90(5):S60. [DOI:10.1016/j.fertnstert.2008.08.065]
9. Carp H. Immunotherapy for recurrent pregnancy loss. Best Practice & Research Clinical Obstetrics & Gynaecology. 2019;60:77-86. [DOI:10.1016/j.bpobgyn.2019.07.005]
10. RPL EGGo, Bender Atik R, Christiansen OB, Elson J, Kolte AM, Lewis S, et al. ESHRE guideline: recurrent pregnancy loss. Human reproduction open. 2018;2018(2):hoy004. [DOI:10.1093/hropen/hoy004]
11. Medicine PCotASfR. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertility and sterility. 2020;113(3):533-5. [DOI:10.1016/j.fertnstert.2019.11.025]
12. Alijotas-Reig J, Garrido-Gimenez C. Current concepts and new trends in the diagnosis and management of recurrent miscarriage.
13. Obstetrical & gynecological survey. 2013;68(6):445-66.
14. van Dijk MM, Kolte AM, Limpens J, Kirk E, Quenby S, van Wely M, et al. Recurrent pregnancy loss: diagnostic workup after two or three pregnancy losses? A systematic review of the literature and meta-analysis. Human reproduction update. 2020;26(3):356-67. [DOI:10.1093/humupd/dmz048]
15. Boue J, Boué A, Lazar P. The epidemiology of human spontaneous abortions with chromosomal anomalies. Aging Gametes: Their Biology and Pathology: Karger Publishers; 1975. p. 330-48. [DOI:10.1159/000396086]
16. Black M, Shetty A, Bhattacharya S. Obstetric outcomes subsequent to intrauterine death in the first pregnancy. BJOG: An International Journal of Obstetrics & Gynaecology. 2008;115(2):269-74. [DOI:10.1111/j.1471-0528.2007.01562.x]
17. Bhattacharya S, Townend J, Shetty A, Campbell D, Bhattacharya S. Does miscarriage in an initial pregnancy lead to adverse obstetric and perinatal outcomes in the next continuing pregnancy? BJOG: An International Journal of Obstetrics & Gynaecology. 2008;115(13):1623-9. [DOI:10.1111/j.1471-0528.2008.01943.x]
18. Daya S, Gunby J, Group RMIT. The effectiveness of allogeneic leukocyte immunization in unexplained primary recurrent spontaneous abortion. American Journal of Reproductive Immunology. 1994;32(4):294-302. [DOI:10.1111/j.1600-0897.1994.tb01129.x]
19. Vomstein K, Feil K, Strobel L, Aulitzky A, Hofer-Tollinger S, Kuon R-J, et al. Immunological risk factors in recurrent pregnancy loss: guidelines versus current state of the art. Journal of Clinical Medicine. 2021;10(4):869. [DOI:10.3390/jcm10040869]
20. Kapugi M, Cunningham K. Corticosteroids. Orthopaedic Nursing. 2019;38(5):336-9. [DOI:10.1097/NOR.0000000000000595]
21. Addison R, Maguire D, Mortimer R, Roberts M, Cannell G. Pathway and kinetics of prednisolone metabolism in the human placenta. The Journal of Steroid Biochemistry and Molecular Biology. 1993;44(3):315-20. [DOI:10.1016/0960-0760(93)90093-C]
22. Dan S, Wei W, Yichao S, Hongbo C, Shenmin Y, Jiaxiong W, et al. Effect of prednisolone administration on patients with unexplained recurrent miscarriage and in routine intracytoplasmic sperm injection: a meta‐analysis. American Journal of Reproductive Immunology. 2015;74(1):89-97. [DOI:10.1111/aji.12373]
23. Fawzy M, El-Refaeey A-AA. Does combined prednisolone and low molecular weight heparin have a role in unexplained implantation failure? Archives of gynecology and obstetrics. 2014;289:677-80. [DOI:10.1007/s00404-013-3020-8]
24. Quenby S, Kalumbi C, Bates M, Farquharson R, Vince G. Prednisolone reduces preconceptual endometrial natural killer cells in women with recurrent miscarriage. Fertility and sterility. 2005;84(4):980-4. [DOI:10.1016/j.fertnstert.2005.05.012]
25. Tang A-W, Alfirevic Z, Turner MA, Drury JA, Small R, Quenby S. A feasibility trial of screening women with idiopathic recurrent miscarriage for high uterine natural killer cell density and randomizing to prednisolone or placebo when pregnant. Human Reproduction. 2013;28(7):1743-52. [DOI:10.1093/humrep/det117]
26. Makhseed M, Raghupathy R, Azizieh F, Omu A, Al-Shamali E, Ashkanani L. Th1 and Th2 cytokine profiles in recurrent aborters with successful pregnancy and with subsequent abortions. Human reproduction. 2001;16(10):2219-26. [DOI:10.1093/humrep/16.10.2219]
27. Kwak-Kim JY, Gilman-Sachs A, Kim CE. T helper 1 and 2 immune responses in relationship to pregnancy, nonpregnancy, recurrent spontaneous abortions and infertility of repeated implantation failures. Immunology of Gametes and Embryo Implantation. 2005;88:64-79. [DOI:10.1159/000087821]
28. Chen X, Oppenheim JJ, Winkler‐Pickett RT, Ortaldo JR, Howard OZ. Glucocorticoid amplifies IL‐2‐dependent expansion of functional FoxP3+ CD4+ CD25+ T regulatory cells in vivo and enhances their capacity to suppress EAE. European journal of immunology. 2006;36(8):2139-49. [DOI:10.1002/eji.200635873]
29. Lash GE, Bulmer JN, Innes BA, Drury JA, Robson SC, Quenby S. Prednisolone treatment reduces endometrial spiral artery development in women with recurrent miscarriage. Angiogenesis. 2011;14:523-32. [DOI:10.1007/s10456-011-9237-x]
30. Forges T, Monnier-Barbarino P, Guillet-May F, Faure GC, Béné M-C. Corticosteroids in patients with antiovarian antibodies undergoing in vitro fertilization: a prospective pilot study. European journal of clinical pharmacology. 2006;62:699-705. [DOI:10.1007/s00228-006-0169-0]
31. Hasegawa I, Yamanoto Y, Suzuki M, Murakawa H, Kurabayashi T, Takakuwa K, et al. Prednisolone plus low-dose aspirin improves the implantation rate in women with autoimmune conditions who are undergoing in vitro fertilization. Fertility and sterility. 1998;70(6):1044-8. [DOI:10.1016/S0015-0282(98)00343-4]
32. Bramham K, Thomas M, Nelson-Piercy C, Khamashta M, Hunt BJ. First-trimester low-dose prednisolone in refractory antiphospholipid antibody-related pregnancy loss. Blood, The Journal of the American Society of Hematology. 2011;117(25):6948-51. [DOI:10.1182/blood-2011-02-339234]
33. Gomaa MF, Elkholy AG, El-Said MM, Abdel-Salam NE. Combined oral prednisolone and heparin versus heparin: the effect on peripheral NK cells and clinical outcome in patients with unexplained recurrent miscarriage. A double-blind placebo randomized controlled trial. Archives of gynecology and obstetrics. 2014;290:757-62. [DOI:10.1007/s00404-014-3262-0]
34. Laskin CA, Bombardier C, Hannah ME, Mandel FP, Ritchie K, Farewell V, et al. Prednisone and aspirin in women with autoantibodies and unexplained recurrent fetal loss. New England Journal of Medicine. 1997;337(3):148-54. [DOI:10.1056/NEJM199707173370302]
35. Gur C, Diav-Citrin O, Shechtman S, Arnon J, Ornoy A. Pregnancy outcome after first trimester exposure to corticosteroids: a prospective controlled study. Reproductive toxicology. 2004;18(1):93-101. [DOI:10.1016/j.reprotox.2003.10.007]
36. Hasbargen U, Reber D, Versmold H, Schulze A. Growth and development of children to 4 years of age after repeated antenatal steroid administration. European journal of pediatrics. 2001;160:552-5. [DOI:10.1007/s004310100804]
37. Kino T, Inamura N, Sakai F, Nakahara K, Goto T, Okuhara M, et al., editors. Effect of FK-506 on human mixed lymphocyte reaction in vitro. Transplantation proceedings; 1987.
38. Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces I. Fermentation, isolation, and physico-chemical and biological characteristics. The Journal of antibiotics. 1987;40(9):1249-55. [DOI:10.7164/antibiotics.40.1249]
39. Parhizkar F, Motavalli-Khiavi R, Aghebati-Maleki L, Parhizkar Z, Pourakbari R, Kafil HS, et al. The impact of new immunological therapeutic strategies on recurrent miscarriage and recurrent implantation failure. Immunology Letters. 2021;236:20-30. [DOI:10.1016/j.imlet.2021.05.008]
40. Kanzaki Y, Kondoh E, Kawasaki K, Mogami H, Chigusa Y, Konishi I. Pregnancy outcomes in liver transplant recipients: A 15‐year single‐center experience. Journal of Obstetrics and Gynaecology Research. 2016;42(11):1476-82. [DOI:10.1111/jog.13096]
41. Kidney ISGo, Nephrology PotISo. Pregnancy outcomes after kidney graft in Italy: are the changes over time the result of different therapies or of different policies? A nationwide survey (1978-2013). Nephrology Dialysis Transplantation. 2016;31(11):1957-65. [DOI:10.1093/ndt/gfw232]
42. Coscia LA, Constantinescu S, Armenti DP, Moritz MJ. The 25th Anniversary of the National Transplantation Pregnancy Registry. Clinical Transplants. 2015;31:57-68.
43. Mohamed-Ahmed O, Nelson-Piercy C, Bramham K, Gao H, Kurinczuk JJ, Brocklehurst P, et al. Pregnancy outcomes in liver and cardiothoracic transplant recipients: a UK national cohort study. PLoS One. 2014;9(2):e89151. [DOI:10.1371/journal.pone.0089151]
44. Hirota Y, Burnum KE, Acar N, Rabinovich GA, Daikoku T, Dey SK. Galectin-1 markedly reduces the incidence of resorptions in mice missing immunophilin FKBP52. Endocrinology. 2012;153(5):2486-93. [DOI:10.1210/en.2012-1035]
45. Terness P, Kallikourdis M, Betz AG, Rabinovich GA, Saito S, Clark DA. Tolerance signaling molecules and pregnancy: IDO, galectins, and the renaissance of regulatory T cells. American Journal of Reproductive Immunology. 2007;58(3):238-54. [DOI:10.1111/j.1600-0897.2007.00510.x]
46. Barrientos G, Freitag N, Tirado-Gonzalez I, Unverdorben L, Jeschke U, Thijssen VL, et al. Involvement of galectin-1 in reproduction: past, present and future. Human reproduction update. 2014;20(2):175-93. [DOI:10.1093/humupd/dmt040]
47. Ramhorst RE, Giribaldi L, Fraccaroli L, Toscano MA, Stupirski JC, Romero MD, et al. Galectin-1 confers immune privilege to human trophoblast: implications in recurrent fetal loss. Glycobiology. 2012;22(10):1374-86. [DOI:10.1093/glycob/cws104]
48. Wallin EF, Hill DL, Linterman MA, Wood KJ. The calcineurin inhibitor tacrolimus specifically suppresses human T follicular helper cells. Frontiers in Immunology. 2018;9:1184. [DOI:10.3389/fimmu.2018.01184]
49. Díaz-Molina B, Diaz-Bulnes P, Carvajal Palao R, Bernardo MJ, Rodriguez RM, Corte-Iglesias V, et al. Early everolimus initiation fails to counteract the cytotoxic response mediated by CD8+ T and NK cells in heart transplant patients. Frontiers in Immunology. 2018;9:2181. [DOI:10.3389/fimmu.2018.02181]
50. Li H, Shi B. Tolerogenic dendritic cells and their applications in transplantation. Cellular & molecular immunology. 2015;12(1):24-30. [DOI:10.1038/cmi.2014.52]
51. Yamaguchi K. Tacrolimus treatment for infertility related to maternal‐fetal immune interactions. American Journal of Reproductive Immunology. 2019;81(4):e13097. [DOI:10.1111/aji.13097]
52. Nakagawa K, Kuroda K, Sugiyama R, Yamaguchi K. After 12 consecutive miscarriages, a patient received immunosuppressive treatment and delivered an intact baby. Reproductive Medicine and Biology. 2017;16(3):297-301. [DOI:10.1002/rmb2.12040]
53. Moffett A, Regan L, Braude P. Natural killer cells, miscarriage, and infertility. Bmj. 2004;329(7477):1283-5. [DOI:10.1136/bmj.329.7477.1283]
54. Park DW, Lee HJ, Park CW, Hong SR, Kwak‐Kim J, Yang KM. Peripheral blood NK cells reflect changes in decidual NK cells in women with recurrent miscarriages. American journal of reproductive immunology. 2010;63(2):173-80. [DOI:10.1111/j.1600-0897.2009.00777.x]
55. Vane JR. Inhibition of prostaglandin biosynthesis as the mechanism of action of aspirin-like drugs. Adv Biosci. 2014;9:395-411.
56. Vane J, Botting R. The mechanism of action of aspirin. Thrombosis research. 2003;110(5-6):255-8. [DOI:10.1016/S0049-3848(03)00379-7]
57. Chuang Y-J, Swanson R, Raja SM, Olson ST. Heparin enhances the specificity of antithrombin for thrombin and factor Xa independent of the reactive center loop sequence: evidence for an exosite determinant of factor Xa specificity in heparin-activated antithrombin. Journal of Biological Chemistry. 2001;276(18):14961-71. [DOI:10.1074/jbc.M011550200]
58. MB E. Prevention of recurrent miscarriage for women with antiphospholipid antibody or lupus anticoagulant. Cochran Database of Systemic Reviews. 2009;2.
59. Cowchock FS, Reece EA, Balaban D, Branch DW, Plouffe L. Repeated fetal losses associated with antiphospholipid antibodies: a collaborative randomized trial comparing prednisone with low-dose heparin treatment. American journal of obstetrics and gynecology. 1992;166(5):1318-23. [DOI:10.1016/0002-9378(92)91596-3]
60. Alijotas-Reig J, Esteve-Valverde E, Ferrer-Oliveras R, Sáez-Comet L, Lefkou E, Mekinian A, et al. Comparative study of obstetric antiphospholipid syndrome (OAPS) and non-criteria obstetric APS (NC-OAPS): report of 1640 cases from the EUROAPS registry. Rheumatology. 2020;59(6):1306-14. [DOI:10.1093/rheumatology/kez419]
61. Ziakas PD, Pavlou M, Voulgarelis M. Heparin treatment in antiphospholipid syndrome with recurrent pregnancy loss: a systematic review and meta-analysis. Obstetrics & Gynecology. 2010;115(6):1256-62. [DOI:10.1097/AOG.0b013e3181deba40]
62. Rai R, Cohen H, Dave M, Regan L. Randomised controlled trial of aspirin and aspirin plus heparin in pregnant women with recurrent miscarriage associated with phospholipid antibodies (or antiphospholipid antibodies). Bmj. 1997;314(7076):253. [DOI:10.1136/bmj.314.7076.253]
63. Azizi R, Ahmadi M, Danaii S, Abdollahi‐Fard S, Mosapour P, Eghbal‐Fard S, et al. Cyclosporine A improves pregnancy outcomes in women with recurrent pregnancy loss and elevated Th1/Th2 ratio. Journal of cellular physiology. 2019;234(10):19039-47. [DOI:10.1002/jcp.28543]
64. Sketris I, Yatscoff R, Keown P, Canafax DM, First MR, Holt DW, et al. Optimizing the use of cyclosporine in renal transplantation. Clinical biochemistry. 1995;28(3):195-211. [DOI:10.1016/0009-9120(95)91341-Y]
65. Hetland ML. Modern treatment strategies in rheumatoid arthritis. Dan Med Bull. 2011;58(11):B4320.
66. Wang W, Sung N, Gilman-Sachs A, Kwak-Kim J. T helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells. Frontiers in immunology. 2020;11:2025. [DOI:10.3389/fimmu.2020.02025]
67. Piao H-L, Wang S-C, Tao Y, Zhu R, Sun C, Fu Q, et al. Cyclosporine A enhances Th2 bias at the maternal-fetal interface in early human pregnancy with aid of the interaction between maternal and fetal cells. 2012. [DOI:10.1371/journal.pone.0045275]
68. Zhou W-H, Du M-R, Dong L, Zhu X-Y, Yang J-Y, He Y-Y, et al. Cyclosporin A increases expression of matrix metalloproteinase 9 and 2 and invasiveness in vitro of the first-trimester human trophoblast cells via the mitogen-activated protein kinase pathway. Human Reproduction. 2007;22(10):2743-50. [DOI:10.1093/humrep/dem097]
69. Alvarez-Arroyo MV, Yagüe S, Wenger RM, Pereira DS, Jiménez S, González-Pacheco FR, et al. Cyclophilin-mediated pathways in the effect of cyclosporin A on endothelial cells: role of vascular endothelial growth factor. Circulation research. 2002;91(3):202-9. [DOI:10.1161/01.RES.0000027562.91075.56]
70. Ma N, Qin R, Qin W, Liao M, Zhao Y, Hang F, et al. Oral immunosuppressants improve pregnancy outcomes in women with idiopathic recurrent miscarriage: A meta‐analysis. Journal of Clinical Pharmacy and Therapeutics. 2022;47(7):870-8. [DOI:10.1111/jcpt.13629]
71. Fu J. Analysis of the use of cyclosporin A to treat refractory immune recurrent spontaneous abortion. Clinical and Experimental Obstetrics & Gynecology. 2015;42(6):739-42. [DOI:10.12891/ceog2006.2015]
72. Ling Y, Huang Y, Chen C, Mao J, Zhang H. Low dose Cyclosporin A treatment increases
73. live birth rate of unexplained recurrent abortion-initial cohort study. Clinical and Experimental Obstetrics & Gynecology. 2017;44(2):230-5. [DOI:10.12891/ceog3375.2017]
74. Cavalcante MB, da Silva PHA, Sampaio OGM, Câmara FEA, Cavalcante CTdMB, Barini R. The use of immunotherapies for recurrent miscarriage: An overview of systematic reviews and meta-analysis. Journal of Reproductive Immunology. 2023:103986. [DOI:10.1016/j.jri.2023.103986]
75. Umoh IU, Aquaisua A, Udo N. The effect of fresh stem juice extract of Costus afer on the cytohistomorphology of the kidney in aspirin-treated Wistar rats. Journal of Applied Biology and Biotechnology. 2019;7(2):78â€'81. [DOI:10.7324/JABB.2019.70214]
76. Sokos DR, Berger M, Lazarus HM. Intravenous immunoglobulin: appropriate indications and uses in hematopoietic stem cell transplantation. Biology of blood and marrow transplantation. 2002;8(3):117-30. [DOI:10.1053/bbmt.2002.v8.pm11939601]
77. Imbach P, d'Apuzzo V, Hirt A, Rossi E, Vest M, Barandun S, et al. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. The lancet. 1981;317(8232):1228-31. [DOI:10.1016/S0140-6736(81)92400-4]
78. Luke PP, Jordan ML, Scantlebury VP, Vivas CA, Fedorek S, Hakala TR, et al. REVERSAL OF STEROID AND ANTIBODY-RESISTANT REJECTION USING IVIG IN RENAL TRANSPLANT PATIENTS.: Abstract# 430 Poster Board#-Session: P70-II. Transplantation. 2000;69(8):S225. [DOI:10.1097/00007890-200004271-00430]
79. Branch DW, Porter TF, Paidas MJ, Belfort MA, Gonik B. Obstetric uses of intravenous immunoglobulin: successes, failures, and promises. Journal of allergy and clinical immunology. 2001;108(4):S133-S8. [DOI:10.1067/mai.2001.117821]
80. Andersson J, Skansen-Saphir U, Sparrelid E, Andersson U. Intravenous immune globulin affects cytokine production in T lymphocytes and monocytesjmacrophages. Clinical & Experimental Immunology. 1996;104:10-20. [DOI:10.1111/cei.1996.104.s1.10]
81. Sherer Y, Wu R, Krause I, Gorstein A, Levy Y, Peter JB, et al. Cytokine levels in various
82. intravenous immunoglobulin (IVIg) preparations. Human antibodies. 2001;10(2):51-3. [DOI:10.3233/HAB-2001-10201]
83. Salmon J, Girardi G, Holers V. Activation of complement mediates antiphospholipid antibody-induced pregnancy loss. Lupus. 2003;12(7):535-8. [DOI:10.1191/0961203303lu397oa]
84. Walpen AJ, Laumonier T, Aebi C, Mohacsi PJ, Rieben R. Immunoglobulin M‐enriched intravenous immunoglobulin inhibits classical pathway complement activation, but not bactericidal activity of human serum. Xenotransplantation. 2004;11(2):141-8. [DOI:10.1046/j.1399-3089.2003.00098.x]
85. Ruiz JE, Kwak JY, Baum L, Gilman-Sachs A, Beaman KD, Kim YB, et al. Effect of intravenous immunoglobulin G on natural killer cell cytotoxicity in vitro in women with recurrent spontaneous abortion. Journal of Reproductive immunology. 1996;31(1-2):125-41. [DOI:10.1016/0165-0378(96)00969-2]
86. Szereday L, Späth P, Szekeres‐Bartho J. Natural killer cell activity and cytokine production after in vitro immunoglobulin treatment of lymphocytes derived from pregnant women with or without risk for spontaneous abortion. American Journal of Reproductive Immunology. 1999;42(5):282-7. [DOI:10.1111/j.1600-0897.1999.tb00102.x]
87. ZENCLUSSEN AC, GENTILE T, MARGNI R, KORTEBANI G, MAZZOLLI A. Asymmetric antibodies and pregnancy. American Journal of Reproductive Immunology. 2001;45(5):289-94. [DOI:10.1111/j.8755-8920.2001.450504.x]
88. Ramírez E, Romero-Garrido JA, López-Granados E, Borobia AM, Pérez T, Medrano N, et al. Symptomatic thromboembolic events in patients treated with intravenous-immunoglobulins: results from a retrospective cohort study. Thrombosis research. 2014;133(6):1045-51. [DOI:10.1016/j.thromres.2014.03.046]
89. Sapir T, Blank M, Shoenfeld Y. Immunomodulatory effects of intravenous immunoglobulins as a treatment for autoimmune diseases, cancer, and recurrent pregnancy loss. Annals of the New York Academy of Sciences. 2005;1051(1):743-78. [DOI:10.1196/annals.1361.118]
90. Ahmadi M, Ghaebi M, Abdolmohammadi‐Vahid S, Abbaspour‐Aghdam S, Hamdi K, Abdollahi‐Fard S, et al. NK cell frequency and cytotoxicity in correlation to pregnancy outcome and response to IVIG therapy among women with recurrent pregnancy loss. Journal of cellular physiology. 2019;234(6):9428-37. [DOI:10.1002/jcp.27627]
91. Ahmadi M, Abdolmohammadi-Vahid S, Ghaebi M, Aghebati-Maleki L, Afkham A, Danaii S, et al. Effect of Intravenous immunoglobulin on Th1 and Th2 lymphocytes and improvement of pregnancy outcome in recurrent pregnancy loss (RPL). Biomedicine & Pharmacotherapy. 2017;92:1095-102. [DOI:10.1016/j.biopha.2017.06.001]
92. Christiansen OB, Kolte AM, Krog MC, Nielsen HS, Egerup P. Treatment with intravenous immunoglobulin in patients with recurrent pregnancy loss: An update. Journal of Reproductive Immunology. 2019;133:37-42. [DOI:10.1016/j.jri.2019.06.001]
93. Raghupathy R. Th 1-type immunity is incompatible with successful pregnancy. Immunology today. 1997;18(10):478-82. [DOI:10.1016/S0167-5699(97)01127-4]
94. Kwak‐Kim J, Chung‐Bang H, Ng S, Ntrivalas E, Mangubat C, Beaman K, et al. Increased T helper 1 cytokine responses by circulating T cells are present in women with recurrent pregnancy losses and in infertile women with multiple implantation failures after IVF. Human reproduction. 2003;18(4):767-73. [DOI:10.1093/humrep/deg156]
95. Mekinian A, Cohen J, Alijotas‐Reig J, Carbillon L, Nicaise‐Roland P, Kayem G, et al. Unexplained recurrent miscarriage and recurrent implantation failure: is there a place for immunomodulation? American Journal of Reproductive Immunology. 2016;76(1):8-28. [DOI:10.1111/aji.12493]
96. Alijotas-Reig J, Esteve-Valverde E, Ferrer-Oliveras R, Llurba E, Gris JM. Tumor necrosis factor-alpha and pregnancy: focus on biologics. An updated and comprehensive review. Clinical reviews in allergy & immunology. 2017;53:40-53. [DOI:10.1007/s12016-016-8596-x]
97. Winger EE, Reed JL, Ashoush S, Ahuja S, El‐Toukhy T, Taranissi M. Treatment with adalimumab (Humira®) and intravenous immunoglobulin improves pregnancy rates in women undergoing IVF. American journal of reproductive immunology. 2009;61(2):113-20. [DOI:10.1111/j.1600-0897.2008.00669.x]
98. Sills ES, Walsh DJ, Shkrobot LV, Palermo GD, Walsh AP. Clinical experience with intravenous immunoglobulin and tnf-a inhibitor therapies for recurrent pregnancy loss. Ulster Med J. 2009;78(1):57-8.
99. Winger EE, Reed JL, Ashoush S, El‐Toukhy T, Ahuja S, Taranissi M. Degree of TNF‐α/IL‐10 cytokine elevation correlates with IVF success rates in women undergoing treatment with adalimumab (Humira) and IVIG. American journal of reproductive immunology. 2011;65(6):610-8. [DOI:10.1111/j.1600-0897.2010.00946.x]
100. Jerzak M, Ohams M, Górski A, Baranowski W. Etanercept immunotherapy in women with a history of recurrent reproductive failure. Ginekologia polska. 2012;83(4).
101. 96. Rump J, Schönborn H. Conception and course of eight pregnancies in five women on TNF blocker etanercept treatment. Zeitschrift fur Rheumatologie. 2010;69(10):903-9. [DOI:10.1007/s00393-010-0652-y]
102. Nagata S, Tsuchiya M, Asano S, Kaziro Y, Yamazaki T, Yamamoto O, et al. Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature. 1986;319(6052):415-8. [DOI:10.1038/319415a0]
103. Uzumaki H, Okabe T, Sasaki N, Hagiwara K, Takaku F, Tobita M, et al. Identification and characterization of receptors for granulocyte colony-stimulating factor on human placenta and trophoblastic cells. Proceedings of the National Academy of Sciences. 1989;86(23):9323-6. [DOI:10.1073/pnas.86.23.9323]
104. Litwin S, Lagadari M, Barrientos G, Roux ME, Margni R, Miranda S. Comparative Immunohistochemical Study of M‐CSF and G‐CSF in Feto-Maternal Interface in a Multiparity Mouse Model. American Journal of Reproductive Immunology. 2005;54(5):311-20. [DOI:10.1111/j.1600-0897.2005.00317.x]
105. McCracken SA, Grant KE, MacKenzie IZ, Redman CW, Mardon HJ. Gestational regulation of granulocyte-colony stimulating factor receptor expression in the human placenta. Biology of reproduction. 1999;60(4):790-6. [DOI:10.1095/biolreprod60.4.790]
106. Umesaki N, Tanaka T, Miyama M, Mizuno K, Ogita S. Production and function of human decidual granulocyte-colony stimulating factor (G-GSF). Placenta. 1999;20:105-16. [DOI:10.1016/S0143-4004(99)80009-5]
107. Svinarich DM, Bitonti OM, Araneda H, Romero R, Gonik B. Induction and postranslational expression of G‐CSF and RANTES in a first trimester trophoblast cell line by lipopolysaccharide. American Journal of Reproductive Immunology. 1996;36(5):256-9. [DOI:10.1111/j.1600-0897.1996.tb00173.x]
108. Marino VJ, Roguin LP. The granulocyte colony stimulating factor (G‐CSF) activates Jak/STAT and MAPK pathways in a trophoblastic cell line. Journal of cellular biochemistry. 2008;103(5):1512-23. [DOI:10.1002/jcb.21542]
109. Novales JS, Salva AM, Modanlou HD, Kaplan DL, del Castillo J, Andersen J, et al. Maternal administration of granulocyte colony-stimulating factor improves neonatal rat survival after a lethal group B streptococcal infection. 1993. [DOI:10.1182/blood.V81.4.923.923]
110. 105. Sugita K, Hayakawa S, Karasaki‐Suzuki M, Hagiwara H, Chishima F, Aleemuzaman S, et al. Granulocyte colony stimulation factor (G‐CSF) suppresses interleukin (IL)‐12 and/or IL‐2 induced interferon (IFN)‐γproduction and cytotoxicity of decidual mononuclear cells. American Journal of Reproductive Immunology. 2003;50(1):83-9. [DOI:10.1034/j.1600-0897.2003.00024.x]
111. Würfel W. Treatment with granulocyte colony-stimulating factor in patients with repetitive implantation failures and/or recurrent spontaneous abortions. Journal of reproductive immunology. 2015;108:123-35. [DOI:10.1016/j.jri.2015.01.010]
112. Pan L, Delmonte JJ, Jalonen CK, Ferrara J. Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. 1995. [DOI:10.1182/blood.V86.12.4422.bloodjournal86124422]
113. Gleicher N, Kim A, Michaeli T, Lee H, Shohat-Tal A, Lazzaroni E, et al. A pilot cohort study of granulocyte colony-stimulating factor in the treatment of unresponsive thin endometrium resistant to
114. standard therapies. Human Reproduction. 2013;28(1):172-7. [DOI:10.1093/humrep/des370]
115. Egea L, Hirata Y, Kagnoff MF. GM-CSF: a role in immune and inflammatory reactions in the intestine. Expert review of gastroenterology & hepatology. 2010;4(6):723-31. [DOI:10.1586/egh.10.73]
116. Robertson SA, Seamark AC, Seamark RF. Uterine epithelial GM-CSF and its interlocutory role during early pregnancy in the mouse. Immunobiology of Reproduction: Springer; 1994. p. 82-98. [DOI:10.1007/978-1-4613-8422-9_6]
117. Perricone R, De Carolis C, Giacomelli R, Guarino MD, De Sanctis G, Fontana L. GM‐CSF and pregnancy: evidence of significantly reduced blood concentrations in unexplained recurrent abortion efficiently reverted by intravenous immunoglobulin treatment. American Journal of Reproductive Immunology. 2003;50(3):232-7. [DOI:10.1034/j.1600-0897.2003.00083.x]
118. Ziebe S, Loft A, Povlsen BB, Erb K, Agerholm I, Aasted M, et al. A randomized clinical trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization. Fertility and sterility. 2013;99(6):1600-9. e2. [DOI:10.1016/j.fertnstert.2012.12.043]
119. Liu Z, Xu H, Kang X, Wang T, He L, Zhao A. Allogenic lymphocyte immunotherapy for unexplained recurrent spontaneous abortion: a meta‐analysis. American Journal of Reproductive Immunology. 2016;76(6):443-53. [DOI:10.1111/aji.12511]
120. Liang X, Qiu T, Qiu L, Wang X, Zhao A, Lin Q. Female third party lymphocytes are effective for immunotherapy of patients with unexplained primary recurrent spontaneous abortion: a retrospective analysis of outcomes. The European Journal of Contraception & Reproductive Health Care. 2015;20(6):428-37. [DOI:10.3109/13625187.2015.1046593]
121. Taylor C, Faulk WP. Prevention of recurrent abortion with leucocyte transfusions. The Lancet. 1981;318(8237):68-70. [DOI:10.1016/S0140-6736(81)90413-X]
122. Hajipour H, Nejabati HR, Latifi Z, Hamdi K, Bahrami‐asl Z, Fattahi A, et al. Lymphocytes immunotherapy for preserving pregnancy: mechanisms and challenges. American Journal of Reproductive Immunology. 2018;80(3):e12853. [DOI:10.1111/aji.12853]
123. Pandey MK, Rani R, Agrawal S. An update in recurrent spontaneous abortion. Archives of gynecology and obstetrics. 2005;272:95-108. [DOI:10.1007/s00404-004-0706-y]
124. Christiansen OB, Mathiesen O, Husth M, Lauritsen JG, Grunnet N. Placebo‐controlled trial of active immunization with third party leukocytes in recurrent miscarriage. Acta obstetricia et gynecologica Scandinavica. 1994;73(3):261-8. [DOI:10.3109/00016349409023451]
125. Smith JB, Cowchock FS, Lata JA, Hankinson BT. The number of cells used for immunotherapy of repeated spontaneous abortion influences pregnancy outcome. Journal of reproductive immunology. 1992;22(3):217-24. [DOI:10.1016/0165-0378(92)90044-5]
126. Matsubayashi H, IZUMI SI, SUGI T, YOSHIKATA K, MAKINO T, MARUYAMA T, et al. Anti‐paternal antibodies by flow cytometry in the management of alloimmunization on recurrent miscarriages. American Journal of Reproductive Immunology. 2000;44(5):284-8. [DOI:10.1111/j.8755-8920.2000.440506.x]
127. 121. Illeni MT, Marelli G, Parazzini F, Acaia B, Bocciolone L, Bontempelli M, et al. Immunology: Immunotherapy and recurrent abortion: a randomized clinical trial. Human Reproduction. 1994;9(7):1247-9. [DOI:10.1093/oxfordjournals.humrep.a138687]
128. Ito K, Tanaka T, Tsutsumi N, Obata F, Kashiwagi N. Possible mechanisms of immunotherapy for maintaining pregnancy in recurrent spontaneous aborters: analysis of anti-idiotypic antibodies directed against autologous T-cell receptors. Human Reproduction. 1999;14(3):650-5. [DOI:10.1093/humrep/14.3.650]
129. Adachi H, Takakuwa K, Mitsui T, Ishii K, Tamura M, Tanaka K. Results of immunotherapy for patients with unexplained secondary recurrent abortions. Clinical Immunology. 2003;106(3):175-80. [DOI:10.1016/S1521-6616(02)00044-X]
130. Khonina N, Broitman E, Shevela E, Pasman N, Chernykh E. Mixed lymphocyte reaction blocking factors (MLR-Bf) as potential biomarker for indication and efficacy of paternal lymphocyte immunization in recurrent spontaneous abortion. Archives of gynecology and obstetrics. 2013;288:933-7. [DOI:10.1007/s00404-013-2832-x]
131. Check JH, Arwitz M, Gross J, Peymer M, Szekeres‐Bartho J. Lymphocyte immunotherapy (LI) increases serum levels of progesterone induced blocking factor (PIBF). American Journal of Reproductive Immunology. 1997;37(1):17-20. [DOI:10.1111/j.1600-0897.1997.tb00188.x]
132. Pandey MK, Thakur S, Agrawal S. Lymphocyte immunotherapy and its probable mechanism in the maintenance of pregnancy in women with recurrent spontaneous abortion. Archives of gynecology and obstetrics. 2004;269:161-72. [DOI:10.1007/s00404-003-0560-3]
133. HIGUCHI K, Aoki K, Kimbara T, Hosoi N, Yamamoto T, OKADA H. Suppression of natural killer cell activity by monocytes following immunotherapy for recurrent spontaneous aborters. American Journal of Reproductive Immunology. 1995;33(3):221-7. [DOI:10.1111/j.1600-0897.1995.tb00888.x]
134. Qiu L, Lin Q, Hong Y. Study on changes of serum T helper cell type 1 and 2 cytokines after active immunotherapy in women with unexplained habitual abortion. Zhonghua Fu Chan Ke Za Zhi. 2001;36(7):408-10.
135. Yokoo T, Takakuwa K, Ooki I, Kikuchi A, Tamura M, Tanaka K. Alteration of TH1 and TH2 cells by intracellular cytokine detection in patients with unexplained recurrent abortion before and after immunotherapy with the husband's mononuclear cells. Fertility and sterility. 2006;85(5):1452-8. [DOI:10.1016/j.fertnstert.2005.10.058]
136. Hua Y-J, Sun Y, Yuan Y, Jiang X-L, Yang F. Lymphocyte immunotherapy for recurrent spontaneous abortion in patients with negative blocking antibody. Int J Clin Exp Med. 2016;9(6):9856-67.
137. Kling C, Steinmann J, Westphal E, Magez J, Kabelitz D. Adverse effects of intradermal allogeneic lymphocyte immunotherapy: acute reactions and role of autoimmunity. Human Reproduction. 2006;21(2):429-35. [DOI:10.1093/humrep/dei316]
138. Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant dentistry. 2001;10(4):225-8. [DOI:10.1097/00008505-200110000-00002]
139. Mejia HA, Bradley JP. The effects of platelet-rich plasma on muscle: basic science
140. and clinical application. Operative Techniques in Sports Medicine. 2011;19(3):149-53. [DOI:10.1053/j.otsm.2011.04.002]
141. Wasterlain AS, Braun HJ, Dragoo JL. Contents and formulations of platelet rich plasma. Platelet Rich Plasma in musculoskeletal practice. 2016:1-29. [DOI:10.1007/978-1-4471-7271-0_1]
142. Nazari L, Salehpour S, Hosseini MS, Hashemi Moghanjoughi P. The effects of autologous platelet-rich plasma in repeated implantation failure: a randomized controlled trial. Human Fertility. 2020;23(3):209-13. [DOI:10.1080/14647273.2019.1569268]
143. Tan S-Y, Hang F, Purvarshi G, Li M-Q, Meng D-H, Huang L-L. Decreased endometrial vascularity and receptivity in unexplained recurrent miscarriage patients during midluteal and early pregnancy phases. Taiwanese Journal of Obstetrics and Gynecology. 2015;54(5):522-6. [DOI:10.1016/j.tjog.2014.10.008]
144. Lea RG, Underwood J, Flanders KC, Hirte H, Banwatt D, Finotto S, et al. A subset of patients with recurrent spontaneous abortion is deficient in transforming growth factor β‐2‐producing "suppressor cells" in uterine tissue near the placental attachment site. American Journal of Reproductive Immunology. 1995;34(1):52-64. [DOI:10.1111/j.1600-0897.1995.tb00919.x]
145. An HJ, Kim JH, Ahn EH, Kim YR, Kim JO, Park HS, et al. 3′-UTR polymorphisms in the vascular endothelial growth factor gene (VEGF) contribute to susceptibility to recurrent pregnancy loss (RPL). International journal of molecular sciences. 2019;20(13):3319. [DOI:10.3390/ijms20133319]
146. Sun Y, Chen M, Mao B, Cheng X, Zhang X, Xu C. Association between vascular endothelial growth factor polymorphism and recurrent pregnancy loss: A systematic review and meta-analysis. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2017;211:169-76. [DOI:10.1016/j.ejogrb.2017.03.003]
147. Lash GE, Innes BA, Drury JA, Robson SC, Quenby S, Bulmer JN. Localization of angiogenic growth factors and their receptors in the human endometrium throughout the menstrual cycle and in recurrent miscarriage. Human Reproduction. 2012;27(1):183-95. [DOI:10.1093/humrep/der376]
148. Bagheri A, Chianeh YR, Rao P. Role of angiogenic factors in recurrent pregnancy loss. International Journal of Reproduction, Contraception, Obstetrics and Gynecology. 2013;2(4):497-503. [DOI:10.5455/2320-1770.ijrcog20131201]
149. Daher S, Denardi KdAG, Blotta MHsSL, Mamoni RL, Reck APM, Camano L, et al. Cytokines in recurrent pregnancy loss. Journal of Reproductive Immunology. 2004;62(1-2):151-7. [DOI:10.1016/j.jri.2003.10.004]
150. Ferrara N, Keyt B. Vascular endothelial growth factor: basic biology and clinical implications. Regulation of angiogenesis. 1997:209-32. [DOI:10.1007/978-3-0348-9006-9_9]
151. Nazari L, Salehpour S, Hosseini S, Hashemi T, Borumandnia N, Azizi E. Effect of autologous platelet-rich plasma for treatment of recurrent pregnancy loss: a randomized controlled trial. Obstetrics & Gynecology Science. 2022;65(3):266-72. [DOI:10.5468/ogs.21261]
152. Alhadlaq A, Mao JJ. Mesenchymal stem cells: isolation and therapeutics. Stem cells and development. 2004;13(4):436-48. [DOI:10.1089/scd.2004.13.436]
153. Pourakbari R, Ahmadi H, Yousefi M, Aghebati-Maleki L. Cell therapy in female infertility-related diseases: Emphasis on recurrent miscarriage and repeated implantation failure. Life sciences. 2020;258:118181. [DOI:10.1016/j.lfs.2020.118181]
154. Sadighi-Moghaddam B, Salek Farrokhi A, Namdar Ahmadabad H, Barati M, Moazzeni SM. Mesenchymal stem cell therapy prevents abortion in CBA/J× DBA/2 mating. Reproductive Sciences. 2018;25(8):1261-9. [DOI:10.1177/1933719117737848]
155. Nonaka T, Takakuwa K, Ooki I, Akashi M, Yokoo T, Kikuchi A, et al. Results of immunotherapy for patients with unexplained primary recurrent abortions-prospective non‐randomized cohort study. American Journal of Reproductive Immunology. 2007;58(6):530-6. [DOI:10.1111/j.1600-0897.2007.00536.x]
156. Roussev RG, Acacio B, Ng SC, Coulam CB. Duration of intralipid's suppressive effect on NK cell's functional activity. American Journal of Reproductive Immunology. 2008;60(3):258-63. [DOI:10.1111/j.1600-0897.2008.00621.x]
157. Shreeve N, Sadek K. Intralipid therapy for recurrent implantation failure: new hope or false dawn? Journal of reproductive immunology. 2012;93(1):38-40. [DOI:10.1016/j.jri.2011.11.003]
158. Ota DM, Jessup JM, Babcock GF, Kirschbaum L, Mountain CF, Mcmurtrey MJ, et al. Immune function during intravenous administration of a soybean oil emulsion. Journal of Parenteral and Enteral Nutrition. 1985;9(1):23-7. [DOI:10.1177/014860718500900123]
159. Granato D, Blum S, Rössle C, Le Boucher J, Malnoë A, Dutot G. Effects of parenteral lipid emulsions with different fatty acid composition on immune cell functions in vitro. Journal of Parenteral and Enteral Nutrition. 2000;24(2):113-8. [DOI:10.1177/0148607100024002113]
160. Calder PC, Yaqoob P, Newsholme EA. Triacylglycerol metabolism by lymphocytes and the effect of triacylglycerols on lymphocyte proliferation. Biochemical Journal. 1994;298(3):605-11. [DOI:10.1042/bj2980605]
161. Kinsella JE, Lokesh B, Broughton S, Whelan J. Dietary polyunsaturated fatty acids and eicosanoids: potential effects on the modulation of inflammatory and immune cells: an overview. Nutrition (Burbank). 1990;6(1):24-44.
162. Gogos CA, Kalfarentzos F. Total parenteral nutrition and immune system activity: a review. Nutrition (Burbank, Los Angeles County, Calif). 1995;11(4):339-44.
163. Kohelet D, Peller S, Arbel E, Goldberg M. Preincubation with intravenous lipid emulsion reduces chemotactic motility of neutrophils in cord blood. Journal of Parenteral and Enteral Nutrition. 1990;14(5):472-3. [DOI:10.1177/0148607190014005472]
164. Palmblad J. Intravenous lipid emulsions and host defense-a critical review. Clinical Nutrition. 1991;10(6):303-8. [DOI:10.1016/0261-5614(91)90058-K]
165. Calder P, Sherrington E, Askanazi J, Newsholme E. Inhibition of lymphocyte proliferation in vitro by two lipid emulsions with different fatty acid compositions. Clinical Nutrition. 1994;13(2):69-74. [DOI:10.1016/0261-5614(94)90062-0]
166. Meydani SN, Endres S, Woods MM, Goldin BR, Soo C, Morrill-Labrode A, et al. Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. The Journal of nutrition. 1991;121(4):547-55. [DOI:10.1093/jn/121.4.547]
167. Gogos CA, Zoumbos N, Makri M, Kalfarentzos F. Medium-and long-chain triglycerides have different effects on the synthesis of tumor necrosis factor by human mononuclear cells in patients under total parenteral nutrition. Journal of the American College of Nutrition. 1994;13(1):40-4. [DOI:10.1080/07315724.1994.10718369]
168. Calder PC, Newsholme EA. Polyunsaturated fatty acids suppress human peripheral blood lymphocyte proliferation and interleukin-2 production. Clinical Science (London, England: 1979). 1992;82(6):695-700. [DOI:10.1042/cs0820695]
169. Clark DA. Intralipid as treatment for recurrent unexplained abortion? American Journal of Reproductive Immunology. 1994;32(4):290-3. [DOI:10.1111/j.1600-0897.1994.tb01128.x]
170. Martini AE, Jasulaitis S, Fogg LF, Uhler ML, Hirshfeld-Cytron JE. Evaluating the utility of intralipid infusion to improve live birth rates in patients with recurrent pregnancy loss or recurrent implantation failure. Journal of human reproductive sciences. 2018;11(3):261. [DOI:10.4103/jhrs.JHRS_28_18]
171. Gootenberg DB, Mitchell CM, Kwon DS. Cervicovaginal microbiota and reproductive health: the virtue of simplicity. Cell host & microbe. 2018;23(2):159-68. [DOI:10.1016/j.chom.2018.01.013]
172. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proceedings of the National Academy of Sciences. 2011;108(supplement_1):4680-7. [DOI:10.1073/pnas.1002611107]
173. Van De Wijgert JH, Borgdorff H, Verhelst R, Crucitti T, Francis S, Verstraelen H, et al. The vaginal microbiota: what have we learned after a decade of molecular characterization? PloS one. 2014;9(8):e105998. [DOI:10.1371/journal.pone.0105998]
174. Donders G. Diagnosis and management of bacterial vaginosis and other types of abnormal vaginal bacterial flora: a review. Obstetrical & gynecological survey. 2010;65(7):462-73. [DOI:10.1097/OGX.0b013e3181e09621]
175. Smith SB, Ravel J. The vaginal microbiota, host defence and reproductive physiology. The Journal of physiology. 2017;595(2):451-63. [DOI:10.1113/JP271694]
176. Boskey E, Cone R, Whaley K, Moench T. Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Human reproduction. 2001;16(9):1809-13. [DOI:10.1093/humrep/16.9.1809]
177. Punzón-Jiménez P, Labarta E. The impact of the female genital tract microbiome in women health and reproduction: A review. Journal of Assisted Reproduction and Genetics. 2021;38(10):2519-41. [DOI:10.1007/s10815-021-02247-5]
178. Chadchan SB, Singh V, Kommagani R. Female reproductive dysfunctions and the gut microbiota. Journal of molecular endocrinology. 2022;69(3):R81-R94. [DOI:10.1530/JME-21-0238]
179. Matos A, Da Silva AP, Medeiros R, Bicho M, Bicho MC. Microenvironment in Vagina as a Key-Player on Cervical Cancer: Interaction of Polymorphic Genetic Variants and Vaginal Microbiome as Co-Factors. Cerv Cancer Screen Treat Prev Univers Protoc Ultim Control. 2018. [DOI:10.5772/intechopen.73108]
180. Brotman RM, He X, Gajer P, Fadrosh D, Sharma E, Mongodin EF, et al. Association between cigarette smoking and the vaginal microbiota: a pilot study. BMC infectious diseases. 2014;14(1):1-11. [DOI:10.1186/1471-2334-14-471]
181. Zhou X, Hansmann MA, Davis CC, Suzuki H, Brown CJ, Schütte U, et al. The vaginal bacterial communities of Japanese women resemble those of women in other racial groups. FEMS Immunology & Medical Microbiology. 2010;58(2):169-81. [DOI:10.1111/j.1574-695X.2009.00618.x]
182. Nicco C, Paule A, Konturek P, Edeas M. From donor to patient: collection, preparation and cryopreservation of fecal samples for fecal microbiota transplantation. Diseases. 2020;8(2):9. [DOI:10.3390/diseases8020009]
183. Chinna Meyyappan A, Forth E, Wallace CJ, Milev R. Effect of fecal microbiota transplant on symptoms of psychiatric disorders: a systematic review. BMC psychiatry. 2020;20(1):1-19 [DOI:10.1186/s12888-020-02654-5]
184. Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Frontiers in physiology. 2015;6:81. [DOI:10.3389/fphys.2015.00081]
185. Haahr T, Zacho J, Bräuner M, Shathmigha K, Skov Jensen J, Humaidan P. Reproductive outcome of patients undergoing in vitro fertilisation treatment and diagnosed with bacterial vaginosis or abnormal vaginal microbiota: a systematic PRISMA review and meta‐analysis. BJOG: An International Journal of Obstetrics & Gynaecology. 2019;126(2):200-7. [DOI:10.1111/1471-0528.15178]
186. Peebles K, Velloza J, Balkus JE, McClelland RS, Barnabas RV. High global burden and costs of bacterial vaginosis: a systematic review and meta-analysis. Sexually transmitted diseases. 2019;46(5):304-11. [DOI:10.1097/OLQ.0000000000000972]
187. Fettweis JM, Serrano MG, Brooks JP, Edwards DJ, Girerd PH, Parikh HI, et al. The vaginal microbiome and preterm birth. Nature medicine. 2019;25(6):1012-21. [DOI:10.1038/s41591-019-0450-2]
188. Grewal K, Lee YS, Smith A, Brosens JJ, Bourne T, Al-Memar M, et al. Chromosomally normal miscarriage is associated with vaginal dysbiosis and local inflammation. BMC medicine. 2022;20(1):38. [DOI:10.1186/s12916-021-02227-7]
189. Juliana NC, Suiters MJ, Al-Nasiry S, Morré SA, Peters RP, Ambrosino E. The association between vaginal microbiota dysbiosis, bacterial vaginosis, and aerobic vaginitis, and adverse pregnancy outcomes of women living in sub-Saharan Africa: a systematic review. Frontiers in public health. 2020;8:567885. [DOI:10.3389/fpubh.2020.567885]
190. Koumans EH, Sternberg M, Bruce C, McQuillan G, Kendrick J, Sutton M, et al. The prevalence of bacterial vaginosis in the United States, 2001-2004; associations with symptoms, sexual behaviors, and reproductive health. Sexually transmitted diseases. 2007:864-9. [DOI:10.1097/OLQ.0b013e318074e565]
191. Okahara K, Ishikawa D, Nomura K, Ito S, Haga K, Takahashi M, et al. Matching between donors and ulcerative colitis patients is important for long-term maintenance after fecal microbiota transplantation. Journal of clinical medicine. 2020;9(6):1650. [DOI:10.3390/jcm9061650]
192. Ng SC, Kamm MA, Yeoh YK, Chan PK, Zuo T, Tang W, et al. Scientific frontiers in faecal microbiota transplantation: joint document of Asia-Pacific Association of Gastroenterology (APAGE) and Asia-Pacific Society for Digestive Endoscopy (APSDE). Gut. 2020;69(1):83-91. [DOI:10.1136/gutjnl-2019-319407]
193. Tuniyazi M, Hu X, Fu Y, Zhang N. Canine fecal microbiota transplantation: Current application and possible mechanisms. Veterinary Sciences. 2022;9(8):396. [DOI:10.3390/vetsci9080396]
194. Boskey E, Telsch K, Whaley K, Moench T, Cone R. Acid production by vaginal flora in vitro is consistent with the rate and extent of vaginal acidification. Infection and immunity. 1999;67(10):5170-5. [DOI:10.1128/IAI.67.10.5170-5175.1999]
195. Rajawat AS, Shrivastava V, Shrivastava A, Singh V. In vitro evaluation of inhibitory activity of Probiotic Lactobacilli against Candida species isolated from the vaginal flora of Immunocompro-mised Patients. South Asian J Exp Biol. 2014;3:325-9. [DOI:10.38150/sajeb.3(6).p325-329]
196. Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer R-JM, et al. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2010;298(6):G851-G9. [DOI:10.1152/ajpgi.00327.2009]
197. Phukan N, Parsamand T, Brooks AE, Nguyen TN, Simoes-Barbosa A. The adherence of Trichomonas vaginalis to host ectocervical cells is influenced by lactobacilli. Sexually transmitted infections. 2013;89(6):455-9. [DOI:10.1136/sextrans-2013-051039]
198. Zárate G, Nader‐Macias M. Influence of probiotic vaginal lactobacilli on in vitro adhesion of urogenital pathogens to vaginal epithelial cells. Letters in Applied Microbiology. 2006;43(2):174-80. [DOI:10.1111/j.1472-765X.2006.01934.x]
199. Mastromarino P, Brigidi P, Macchia S, Maggi L, Pirovano F, Trinchieri V, et al. Characterization and selection of vaginal Lactobacillus strains for the preparation of vaginal tablets. Journal of Applied Microbiology. 2002;93(5):884-93. [DOI:10.1046/j.1365-2672.2002.01759.x]
200. Osset J, Bartolomé RM, García E, Andreu A. Assessment of the capacity of Lactobacillus to inhibit the growth of uropathogens and block their adhesion to vaginal epithelial cells. The Journal of infectious diseases. 2001;183(3):485-91. [DOI:10.1086/318070]
201. Ralph E, Austin T, Pattison F, Schieven B, Pheifer T, Forsyth P, et al. 2 Gardner HL, Dukes CD. Haemophilus vaginalis vaginitis. A newly defined specific infection previously classified" nonspecific" vaginitis. Ami Y. British Medical Journal. 1981;283:747.
202. Tuniyazi M, Zhang N. Possible Therapeutic Mechanisms and Future Perspectives of Vaginal Microbiota Transplantation. Microorganisms. 2023;11(6):1427. [DOI:10.3390/microorganisms11061427]
203. Byrne EH, Doherty KE, Bowman BA, Yamamoto HS, Soumillon M, Padavattan N, et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity. 2015;42(5):965-76. [DOI:10.1016/j.immuni.2015.04.019]
204. Donders GG, Bosmans E, Dekeersmaeckerb A, Vereecken A, Van Bulck B, Spitz B. Pathogenesis of abnormal vaginal bacterial flora. American journal of obstetrics and gynecology. 2000;182(4):872- [DOI:10.1016/S0002-9378(00)70338-3]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | {Sarem Journal of Medical Research}

Designed & Developed by : Yektaweb