1. Mungamuri, S.K., et al., Chromatin modifications sequentially enhance ErbB2 expression in ErbB2-positive breast cancers. Cell reports, 2013. 5(2): p. 302-313. [
DOI:10.1016/j.celrep.2013.09.009]
2. Moasser, M.M., The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene, 2007. 26(45): p. 6469-6487. [
DOI:10.1038/sj.onc.1210477]
3. Sirkisoon, S.R., et al., EGFR and HER2 signaling in breast cancer brain metastasis. Frontiers in bioscience (Elite edition), 2016. 8: p. 245. [
DOI:10.2741/e765]
4. Choudhury, A., et al., Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. International journal of cancer, 2004. 108(1): p. 71-77. [
DOI:10.1002/ijc.11497]
5. Korkaya, H. and M.S. Wicha, HER2 and breast cancer stem cells: more than meets the eye. Cancer research, 2013. 73(12): p. 3489-3493. [
DOI:10.1158/0008-5472.CAN-13-0260]
6. El Hadi, H., et al., Development and evaluation of a novel RT-qPCR based test for the quantification of HER2 gene expression in breast cancer. Gene, 2017. 605: p. 114-122. [
DOI:10.1016/j.gene.2016.12.027]
7. Thariat, J. and P.-Y. Marcy, Neck dissection and chemoradiation in head and neck cancer. The Lancet Oncology, 2010. 11(3): p. 224-225. [
DOI:10.1016/S1470-2045(10)70002-4]
8. Ménard, S., et al., Role of HER2 gene overexpression in breast carcinoma. Journal of cellular physiology, 2000. 182(2): p. 150-162.
https://doi.org/10.1002/(SICI)1097-4652(200002)182:2<150::AID-JCP3>3.0.CO;2-E [
DOI:10.1002/(SICI)1097-4652(200002)182:23.0.CO;2-E]
9. Merry, C.R., et al., Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer. Oncotarget, 2016. 7(33): p. 53230. [
DOI:10.18632/oncotarget.10637]
10. Shlyueva, D., G. Stampfel, and A. Stark, Transcriptional enhancers: from properties to genome-wide predictions. Nature Reviews Genetics, 2014. 15(4): p. 272-286. [
DOI:10.1038/nrg3682]
11. Zlotorynski, E., Gene expression: Developmental enhancers in action. Nature Reviews Genetics, 2018. 19(4): p. 187. [
DOI:10.1038/nrg.2018.13]
12. Li, W., D. Notani, and M.G. Rosenfeld, Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nature Reviews Genetics, 2016. 17(4): p. 207-223. [
DOI:10.1038/nrg.2016.4]
13. Shin, H.Y., Targeting super-enhancers for disease treatment and diagnosis. Molecules and cells, 2018. 41(6): p. 506.
14. Nebbioso, A., et al., Cancer epigenetics: moving forward. PLoS genetics, 2018. 14(6): p. e1007362. [
DOI:10.1371/journal.pgen.1007362]
15. Xi, Y., et al., Histone modification profiling in breast cancer cell lines highlights commonalities and differences among subtypes. BMC genomics, 2018. 19(1): p. 1-11. [
DOI:10.1186/s12864-018-4533-0]
16. Liu, Q., et al., A novel HER2 gene body enhancer contributes to HER2 expression. Oncogene, 2018. 37(5): p. 687-694. [
DOI:10.1038/onc.2017.382]
17. Wang, H. and W. Sun, CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation. Cancer letters, 2017. 385: p. 137-143. [
DOI:10.1016/j.canlet.2016.10.033]
18. Huang, D.W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 2009. 4(1): p. 44-57. [
DOI:10.1038/nprot.2008.211]
19. Viewer, I.G., Broad Institute. URL: https://software. broadinstitute. org/software/igv/[accessed 2022-05-12].
20. Wilks, C., et al., recount3: summaries and queries for large-scale RNA-seq expression and splicing. Genome biology, 2021. 22(1): p. 1-40. [
DOI:10.1186/s13059-021-02533-6]
21. Oki, S., et al., Ch IP‐Atlas: a data‐mining suite powered by full integration of public Ch IP‐seq data. EMBO reports, 2018. 19(12): p. e46255. [
DOI:10.15252/embr.201846255]
22. Chao, W.-R., et al., HER2 amplification and overexpression are significantly correlated in mucinous epithelial ovarian cancer. Human pathology, 2014. 45(4): p. 810-816. [
DOI:10.1016/j.humpath.2013.11.016]
23. Nencioni, A., et al., Grb7 upregulation is a molecular adaptation to HER2 signaling inhibition due to removal of Akt-mediated gene repression. PloS one, 2010. 5(2): p. e9024. [
DOI:10.1371/journal.pone.0009024]
24. Manning, B.D. and L.C. Cantley, AKT/PKB signaling: navigating downstream. Cell, 2007. 129(7): p. 1261-1274. [
DOI:10.1016/j.cell.2007.06.009]
25. Hemmings, B.A. and D.F. Restuccia, Pi3k-pkb/akt pathway. Cold Spring Harbor perspectives in biology, 2012. 4(9): p. a011189. [
DOI:10.1101/cshperspect.a011189]
26. Szklarczyk, D., et al., The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic acids research, 2016: p. gkw937. [
DOI:10.1093/nar/gkw937]
27. Stanimir, M., et al., Mullerianosis of the urinary bladder: a rare case report and review of the literature. Rom J Morphol Embryol, 2016. 57(2 Suppl): p. 849-852.
28. Klann, T.S., et al., CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nature biotechnology, 2017. 35(6): p. 561-568. [
DOI:10.1038/nbt.3853]