Volume 7, Issue 3 (2022)                   SJMR 2022, 7(3): 157-164 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sanaye Naderi M, Nateghi M R. Investigating the expression of mesenchymal markers in stem cells of human umbilical cord matrix (Wharton's jelly). SJMR 2022; 7 (3) : 4
URL: http://saremjrm.com/article-1-274-en.html
1- m Gynecology, Obstetrics and Infertility Research Center, Sarem Women's Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran.
Abstract:   (1323 Views)
Introduction: Mesenchymal stem cells are multipotent cells that are characterized by the ability to self-renew and differentiate and transform into other types of body cells. Umbilical cord cells are a valuable source of mesenchymal stem cells that are of interest for stem cell therapy. In this study, stem cells of umbilical cord matrix were investigated using several mesenchymal markers.
Material and methods: In the present study, after isolation and cultivation of the cells, when they reached 80% confluency, they were trypsinized and passaged, and after the fourth passage, the cells were prepared for flow cytometry. First, the cells were counted and about 5x106 cells were prepared along with 20 µl of conjugated antibody of baficoarithrin (PE) and fluorescein isothiocyanate (FITC) and 100 µl of PBS and centrifuged. Finally, the cell plaque was dissolved in 100 µl of PBS and analyzed by flow cytometry.
Results: The findings showed that more than 80% of the stem cells population derived from the umbilical cord matrix expressed mesenchymal stem cell markers. The population of stem cells isolated from the umbilical cord matrix were positive for MSC markers.

Conclusion: The results demonstrated that umbilical cord cells matrix are a source of mesenchymal stem cells that can be a suitable substitute for stem cells in clinical applications and cell therapy.

 
Article number: 4
Full-Text [PDF 387 kb]   (319 Downloads)    
Article Type: Original Research | Subject: Reproduction
Received: 2022/11/6 | Accepted: 2022/12/6 | Published: 2023/06/14

References
1. Mahabadi, J.A., et al., Derivation of male germ cells from induced pluripotent stem cells by inducers: A review. Cytotherapy, 2018. 20(3): 279-290. [DOI:10.1016/j.jcyt.2018.01.002]
2. Baksh, D., L. Song, and R.S. Tuan, Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. Journal of cellular and molecular medicine, 2004. 8(3): 301-316. [DOI:10.1111/j.1582-4934.2004.tb00320.x]
3. Barry, F.P. and J.M. Murphy, Mesenchymal stem cells: clinical applications and biological characterization. The international journal of biochemistry & cell biology, 2004. 36(4): 568-584. [DOI:10.1016/j.biocel.2003.11.001]
4. Tropel, P., et al., Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Experimental cell research, 2004. 295(2): 395-406. [DOI:10.1016/j.yexcr.2003.12.030]
5. ML, T.D.W., Wharton's jelly-derived cells are a primitive stromal cell population Stem Cells 26591 2008. 9. Troyer, DL, and Weiss, ML Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells, 2008. 26: 591. [DOI:10.1634/stemcells.2007-0439]
6. Fu, Y.-S., et al., Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem cells, 2006. 24(1): 115-124. [DOI:10.1634/stemcells.2005-0053]
7. Baksh, D., R. Yao, and R.S. Tuan, Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem cells, 2007. 25(6): 1384-1392. [DOI:10.1634/stemcells.2006-0709]
8. Wang, J.-F., et al., Mesenchymal stem/progenitor cells in human umbilical cord blood as support for ex vivo expansion of CD34 (+) hematopoietic stem cells and for chondrogenic differentiation. haematologica, 2004. 89(7): 837-844.
9. Sarugaser, R., et al., Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem cells, 2005. 23(2): 220-229. [DOI:10.1634/stemcells.2004-0166]
10. Weiss, M.L., et al., Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem cells, 2006. 24(3): 781-792. [DOI:10.1634/stemcells.2005-0330]
11. Qiao, C., et al., Human mesenchymal stem cells isolated from the umbilical cord. Cell biology international, 2008. 32(1): 8-15. [DOI:10.1016/j.cellbi.2007.08.002]
12. Erices, A., P. Conget, and J.J. Minguell, Mesenchymal progenitor cells in human umbilical cord blood. British journal of haematology, 2000. 109(1): 235-242. [DOI:10.1046/j.1365-2141.2000.01986.x]
13. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893): 41-49. [DOI:10.1038/nature00870]
14. Troyer DLꎬWeiss, M., Wharton′ s jelly-derived cells are a primitive stromal cell population. Stem Cellsꎬ2008ꎬ26 (3): 591-599. [DOI:10.1634/stemcells.2007-0439]
15. Lu, L.-L., et al., Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. haematologica, 2006. 91(8): 1017-1026.
16. Secco, M., et al., Multipotent stem cells from umbilical cord: cord is richer than blood! Stem cells, 2008. 26(1): 146-150. [DOI:10.1634/stemcells.2007-0381]
17. Can, A. and S. Karahuseyinoglu, Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem cells, 2007. 25(11): 2886-2895. [DOI:10.1634/stemcells.2007-0417]
18. Karahuseyinoglu, S., et al., Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem cells, 2007. 25(2): 319-331. [DOI:10.1634/stemcells.2006-0286]
19. Kern, S., et al., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells, 2006. 24(5): 1294-1301. [DOI:10.1634/stemcells.2005-0342]
20. Jones, E. and D. McGonagle, Human bone marrow mesenchymal stem cells in vivo. Rheumatology, 2008. 47(2): 126-131. [DOI:10.1093/rheumatology/kem206]
21. Solter, D. and B.B. Knowles, Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proceedings of the National Academy of Sciences, 1978. 75(11): 5565-5569. [DOI:10.1073/pnas.75.11.5565]
22. Wiesmann, A., et al., Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head & face medicine, 2006. 2: 1-6. [DOI:10.1186/1746-160X-2-8]
23. Jin, H.J., et al., Down-regulation of CD105 is associated with multi-lineage differentiation in human umbilical cord blood-derived mesenchymal stem cells. Biochemical and biophysical research communications, 2009. 381(4): 676-681. [DOI:10.1016/j.bbrc.2009.02.118]
24. Koch, T.G., et al., Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC biotechnology, 2007. 7: 1-9. [DOI:10.1186/1472-6750-7-26]
25. Lovati, A.B., et al., Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived progenitor cells. Veterinary research communications, 2011. 35: 103-121. [DOI:10.1007/s11259-010-9457-3]
26. Seo, M.J., et al., Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochemical and biophysical research communications, 2005. 328(1): 258-264. [DOI:10.1016/j.bbrc.2004.12.158]
27. Romanov, Y.A., V.A. Svintsitskaya, and V.N. Smirnov, Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem cells, 2003. 21(1): 105-110. [DOI:10.1634/stemcells.21-1-105]
28. Zeddou, M., et al., The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood. Cell biology international, 2010. 34(7): 693-701. [DOI:10.1042/CBI20090414]
29. Mahabadi, J.A., et al., Derivation of male germ cells from induced pluripotent stem cells by inducers: A review. Cytotherapy, 2018. 20(3): 279-290. [DOI:10.1016/j.jcyt.2018.01.002]
30. Baksh, D., L. Song, and R.S. Tuan, Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. Journal of cellular and molecular medicine, 2004. 8(3): 301-316. [DOI:10.1111/j.1582-4934.2004.tb00320.x]
31. Barry, F.P. and J.M. Murphy, Mesenchymal stem cells: clinical applications and biological characterization. The international journal of biochemistry & cell biology, 2004. 36(4): 568-584. [DOI:10.1016/j.biocel.2003.11.001]
32. Tropel, P., et al., Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Experimental cell research, 2004. 295(2): 395-406. [DOI:10.1016/j.yexcr.2003.12.030]
33. ML, T.D.W., Wharton's jelly-derived cells are a primitive stromal cell population Stem Cells 26591 2008. 9. Troyer, DL, and Weiss, ML Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells, 2008. 26: 591. [DOI:10.1634/stemcells.2007-0439]
34. Fu, Y.-S., et al., Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem cells, 2006. 24(1): 115-124. [DOI:10.1634/stemcells.2005-0053]
35. Baksh, D., R. Yao, and R.S. Tuan, Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem cells, 2007. 25(6): 1384-1392. [DOI:10.1634/stemcells.2006-0709]
36. Wang, J.-F., et al., Mesenchymal stem/progenitor cells in human umbilical cord blood as support for ex vivo expansion of CD34 (+) hematopoietic stem cells and for chondrogenic differentiation. haematologica, 2004. 89(7): 837-844.
37. Sarugaser, R., et al., Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem cells, 2005. 23(2): 220-229. [DOI:10.1634/stemcells.2004-0166]
38. Weiss, M.L., et al., Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem cells, 2006. 24(3): 781-792. [DOI:10.1634/stemcells.2005-0330]
39. Qiao, C., et al., Human mesenchymal stem cells isolated from the umbilical cord. Cell biology international, 2008. 32(1): 8-15. [DOI:10.1016/j.cellbi.2007.08.002]
40. Erices, A., P. Conget, and J.J. Minguell, Mesenchymal progenitor cells in human umbilical cord blood. British journal of haematology, 2000. 109(1): 235-242. [DOI:10.1046/j.1365-2141.2000.01986.x]
41. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893): 41-49. [DOI:10.1038/nature00870]
42. Troyer DLꎬWeiss, M., Wharton′ s jelly-derived cells are a primitive stromal cell population. Stem Cellsꎬ2008ꎬ26 (3): 591-599. [DOI:10.1634/stemcells.2007-0439]
43. Lu, L.-L., et al., Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. haematologica, 2006. 91(8): 1017-1026.
44. Secco, M., et al., Multipotent stem cells from umbilical cord: cord is richer than blood! Stem cells, 2008. 26(1): 146-150. [DOI:10.1634/stemcells.2007-0381]
45. Can, A. and S. Karahuseyinoglu, Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem cells, 2007. 25(11): 2886-2895. [DOI:10.1634/stemcells.2007-0417]
46. Karahuseyinoglu, S., et al., Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem cells, 2007. 25(2): 319-331. [DOI:10.1634/stemcells.2006-0286]
47. Kern, S., et al., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells, 2006. 24(5): 1294-1301. [DOI:10.1634/stemcells.2005-0342]
48. Jones, E. and D. McGonagle, Human bone marrow mesenchymal stem cells in vivo. Rheumatology, 2008. 47(2): 126-131. [DOI:10.1093/rheumatology/kem206]
49. Solter, D. and B.B. Knowles, Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proceedings of the National Academy of Sciences, 1978. 75(11): 5565-5569. [DOI:10.1073/pnas.75.11.5565]
50. Wiesmann, A., et al., Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head & face medicine, 2006. 2: 1-6. [DOI:10.1186/1746-160X-2-8]
51. Jin, H.J., et al., Down-regulation of CD105 is associated with multi-lineage differentiation in human umbilical cord blood-derived mesenchymal stem cells. Biochemical and biophysical research communications, 2009. 381(4): 676-681. [DOI:10.1016/j.bbrc.2009.02.118]
52. Koch, T.G., et al., Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC biotechnology, 2007. 7: 1-9. [DOI:10.1186/1472-6750-7-26]
53. Lovati, A.B., et al., Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived progenitor cells. Veterinary research communications, 2011. 35: 103-121. [DOI:10.1007/s11259-010-9457-3]
54. Seo, M.J., et al., Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochemical and biophysical research communications, 2005. 328(1): 258-264. [DOI:10.1016/j.bbrc.2004.12.158]
55. Romanov, Y.A., V.A. Svintsitskaya, and V.N. Smirnov, Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem cells, 2003. 21(1): 105-110. [DOI:10.1634/stemcells.21-1-105]
56. Zeddou, M., et al., The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood. Cell biology international, 2010. 34(7): 693-701. [DOI:10.1042/CBI20090414]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | {Sarem Journal of Medical Research}

Designed & Developed by : Yektaweb