1. Reference:
2. Fan, Y., et al., SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal transduction and targeted therapy, 2022. 7(1): p. 141. [
DOI:10.1038/s41392-022-00997-x]
3. Hasani, H., et al., The novel coronavirus disease (COVID-19): a PRISMA systematic review and meta-analysis of clinical and paraclinical characteristics. BioMed Research International, 2020. p 2020: p. 1-16. [
DOI:10.1155/2020/3149020]
4. Mardi, P., et al., Characteristics of children With Kawasaki disease-like signs in COVID-19 pandemic: a systematic review. Frontiers in pediatrics, p 2021. 9: p. 625377. [
DOI:10.3389/fped.2021.625377]
5. Kunutsor, S.K. and J.A. Laukkanen, Renal complications in COVID-19: a systematic review and meta-analysis. Annals of medicine, 2020. 52(7): [
DOI:10.1080/07853890.2020.1790643]
6. p. 345-353.
7. Basu, D., V.P. Chavda, and A.A. Mehta, Therapeutics for COVID-19 and post COVID-19 complications: An update. Current Research in Pharmacology and Drug Discovery, 2022: p. 100086. [
DOI:10.1016/j.crphar.2022.100086]
8. Raman, B., et al., Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. European heart journal, 2022. 43(11): p. 1157-1172. [
DOI:10.1093/eurheartj/ehac031]
9. Fernández-de-Las-Peñas, C., et al., Defining post-COVID symptoms (post-acute COVID, long COVID, persistent post-COVID): an integrative classification. International journal of environmental research and public health, 2021. 18(5): p. 2621. [
DOI:10.3390/ijerph18052621]
10. Kashani, K., M.H. Rosner, and M. Ostermann, Creatinine: From physiology to clinical application. European journal of internal medicine, p 2020. 72: p. 9-14. [
DOI:10.1016/j.ejim.2019.10.025]
11. Lopes, J.A. and S. Jorge, The RIFLE and AKIN classifications for acute kidney injury: a critical and comprehensive review. Clinical kidney journal, p 2013. 6(1): p. 8-14. [
DOI:10.1093/ckj/sfs160]
12. Negi, S., et al. Acute kidney injury: Epidemiology, outcomes, complications, and therapeutic strategies. in Seminars in dialysis. 2018. Wiley Online Library. [
DOI:10.1111/sdi.12705]
13. Levey, A.S. and M.T. James, Acute kidney injury. Annals of internal medicine, 2017. 167(9): p. ITC66-ITC80. [
DOI:10.7326/AITC201711070]
14. Parikh, C.R., et al., Tubular proteinuria in acute kidney injury: a critical evaluation of current status and future promise. Annals of clinical biochemistry, 2010. 47(4): p. 301-312. [
DOI:10.1258/acb.2010.010076]
15. Rydén, L., et al., Acute kidney injury following coronary artery bypass grafting: early mortality and postoperative complications. Scandinavian Cardiovascular Journal, 2012. 46(2): [
DOI:10.3109/14017431.2012.657229]
16. p. 114-120.
17. Chao, C.-T., et al., The severity of initial acute kidney injury at admission of geriatric patients significantly correlates with subsequent in-hospital complications. Scientific Reports, 2015. 5(1): [
DOI:10.1038/srep13925]
18. p. 13925.
19. Mohamadiafrakot, M., et al., World kidney day in COVID-19 years; a narrative review. Sarem Journal of Medical research, 2023. 7(2): p. 103-111.
20. Bouchard, J. and R.L. Mehta, Fluid accumulation and acute kidney injury: consequence or cause. Current opinion in critical care, 2009. 15(6): [
DOI:10.1097/MCC.0b013e328332f653]
21. p. 509-513.
22. Pourfridoni, M., et al., Fluid and electrolyte disturbances in COVID-19 and their complications. BioMed Research International, 2021. 2021. [
DOI:10.1155/2021/6667047]