دوره 7، شماره 1 - ( 1401 )                   دوره 7 شماره 1 صفحات 53-41 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- مرکز تحقیقات زنان، زایمان و ناباروری صارم، بیمارستان فوق تخصصی صارم، دانشگاه علوم پزشکی ایران، تهران، ایران. ، saremcrc@gmail.com
2- مرکز تحقیقات زنان، زایمان و ناباروری صارم، بیمارستان فوق تخصصی صارم، دانشگاه علوم پزشکی ایران، تهران، ایران.
چکیده:   (2206 مشاهده)
مقدمه: در طول چند دهه ی گذشته، به لطف پیشرفت در تشخیص و درمان، تعداد بازماندگان سرطان افزایش یافته است. درمان‌های سرطان بسته به سن بیمار، نوع سرطان، رژیم درمانی و دوز داروها اغلب با عوارض جانبی بسیاری همراه می باشد. یکی از مهمترین عوارض بخصوص در سرطان های بیضه و پروستات در مردان، مشکلات ناباروری بعد از درمان سرطان است. بافت بیضه به شیمی درمانی و رادیوتراپی بسیار حساس است. اثرات مضر شیمی درمانی بر روی سلول های زایا به عوامل بسیاری از جمله پارامترهای اولیه ی مایع منی، نحوه ی تجویز دارو، نوع و دوز رژیم های شیمی درمانی و مرحله اسپرم زایی در طول زمان تجویز دارو بستگی دارد. متاسفانه مطالعات بالینی در انسان دشوار هستند زیرا درمان های سرطان اغلب ترکیبی از شیمی درمانی و رادیوتراپی می باشند.
نتیجه گیری: بنابراین، انجام مطالعات تجربی در مدل های حیوانی به منظور تعریف مکانیسم دخیل در سمیت گناد و دارو مهم است تا اثرات تجویز آن ها به تنهایی یا به صورت ترکیبی بر روی بیضه های بالغ و نابالغ ارزیابی گردد. این داده ها به اطلاع بهتر بیماران سرطانی پس از بهبودی در مورد خطرات شیمی درمانی برای باروری آینده آن ها و پیشنهاد گزینه های حفظ باروری کمک می کند. در این بررسی، ما به مرور نحوه ی اثر و عوارض جانبی برخی از داروهای شیمی درمانی بر باروری در مردان می پردازیم.
شماره‌ی مقاله: 5
متن کامل [PDF 960 kb]   (343 دریافت)    
نوع مقاله: مروری تحلیلی | موضوع مقاله: ناباروری
دریافت: 1401/11/30 | پذیرش: 1401/11/30 | انتشار: 1401/11/30

فهرست منابع
1. 1. Vakalopoulos I, et al., Impact of cancer and cancer treatment on male fertility. Hormones. 2015;14(4):579-89. [DOI:10.14310/horm.2002.1620]
2. Simorangkir DR, et al.,. Prepubertal expansion of dark and pale type A spermatogonia in the rhesus monkey (Macaca mulatta) results from proliferation during infantile and juvenile development in a relatively gonadotropin independent manner. Biol Reprod. 2005;73(6):1109-15. [DOI:10.1095/biolreprod.105.044404]
3. Van Alphen MMA, Van de Kant HJG, De Rooij DG. Repopulation of the seminiferous epithelium of the rhesus monkey after X irradiation. Radiat Res. 1988;113(3):487-500. [DOI:10.2307/3577245]
4. Craft I, Bennett V, Nicholson N. Fertilising ability of testicular spermatozoa. Lancet. 1993; 342(8875): 864. [DOI:10.1016/0140-6736(93)92722-6]
5. Thomson AB, et al., Semen quality and spermatozoal DNA integrity in survivors of childhood cancer: a case-control study. Lancet. 2002; 360(9330): 361-7. [DOI:10.1016/S0140-6736(02)09606-X]
6. Steliarova-Foucher E, et al., International incidence of childhood cancer, 2001-10: a population-based registry study. Lancet Oncol. 2017;18(6):719-31. [DOI:10.1016/S1470-2045(17)30186-9]
7. van Casteren NJ, et al., Effect of childhood cancer treatment on fertility markers in adult male long‐term survivors. Pediatr Blood Cancer. 2009;52(1):108-12. [DOI:10.1002/pbc.21780]
8. Kenney LB, et al., High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer. 2001;91(3):613-21. https://doi.org/10.1002/1097-0142(20010201)91:3<613::AID-CNCR1042>3.0.CO;2-R [DOI:10.1002/1097-0142(20010201)91:33.0.CO;2-R]
9. Green DM, et al., Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study. Lancet Oncol. 2014;15(11):1215-23. [DOI:10.1016/S1470-2045(14)70408-5]
10. Poganitsch-Korhonen M, et al., Decreased spermatogonial quantity in prepubertal boys with leukaemia treated with alkylating agents. Leukemia. 2017;31(6):1460-3. [DOI:10.1038/leu.2017.76]
11. Allen CM, et al., How does chemotherapy treatment damage the prepubertal testis? Reproduction. 2018;156(6):R209-33. [DOI:10.1530/REP-18-0221]
12. Jahnukainen K, et al., Testicular function and fertility preservation in male cancer patients. Best Pract Res Clin Endocrinol Metab. 2011;25(2):287-302. [DOI:10.1016/j.beem.2010.09.007]
13. Lirdi LC, et al., Amifostine protective effect on cisplatin‐treated rat testis. Anat Rec Adv Integr Anat Evol Biol Adv Integr Anat Evol Biol. 2008;291(7):797-808. [DOI:10.1002/ar.20693]
14. Favareto APA, et al., Persistent impairment of testicular histology and sperm motility in adult rats treated with cisplatin at peri‐puberty. Basic Clin Pharmacol Toxicol. 2011;109(2):85-96. [DOI:10.1111/j.1742-7843.2011.00688.x]
15. Heinrich A, DeFalco T. Essential roles of interstitial cells in testicular development and function. Andrology. 2020;8(4):903-14. [DOI:10.1111/andr.12703]
16. Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972;52(1):198-236. [DOI:10.1152/physrev.1972.52.1.198]
17. Kanatsu-Shinohara M, Shinohara T. Spermatogonial stem cell self-renewal and development. Annu Rev Cell Dev Biol. 2013;29:163-87. [DOI:10.1146/annurev-cellbio-101512-122353]
18. Chemes HE. Infancy is not a quiescent period of testicular development. Int J Androl. 2001;24(1):2-7. [DOI:10.1046/j.1365-2605.2001.00260.x]
19. Green DM, et al., The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer. 2014;61(1):53-67. [DOI:10.1002/pbc.24679]
20. Romerius P, et al., High risk of azoospermia in men treated for childhood cancer. Int J Androl. 2011;34(1):69-76. [DOI:10.1111/j.1365-2605.2010.01058.x]
21. Romerius P, et al., Sperm DNA integrity in men treated for childhood cancer. Clin Cancer Res. 2010;16(15):3843-50. [DOI:10.1158/1078-0432.CCR-10-0140]
22. Paoli D, et al., Spermatogenesis in Hodgkin's lymphoma patients: a retrospective study of semen quality before and after different chemotherapy regimens. Hum Reprod. 2016;31(2):263-72.
23. Meistrich ML, et al., Impact of cyclophosphamide on long‐term reduction in sperm count in men treated with combination chemotherapy for Ewing and soft tissue sarcomas. Cancer. 1992;70(11):2703-12. https://doi.org/10.1002/1097-0142(19921201)70:11<2703::AID-CNCR2820701123>3.0.CO;2-X [DOI:10.1002/1097-0142(19921201)70:113.0.CO;2-X]
24. Marmor D, Duyck F. Male reproductive potential after MOPP therapy for Hodgkin's disease: a long‐term survey. Andrologia. 1995;27(2):99-106. [DOI:10.1111/j.1439-0272.1995.tb01078.x]
25. Tal R, et al., Follow-up of sperm concentration and motility in patients with lymphoma. Hum Reprod. 2000;15(9):1985-8. [DOI:10.1093/humrep/15.9.1985]
26. Calamera JC, et al., Biochemical changes of the human semen produced by chlorambucil, testosterone propionate and human chorionic gonadotropin administration. Andrologia. 1979;11(1):43-50. [DOI:10.1111/j.1439-0272.1979.tb02158.x]
27. Bieber AM, et al., Effects of chemotherapeutic agents for testicular cancer on the male rat reproductive system, spermatozoa, and fertility. J Androl. 2006;27(2):189-200. [DOI:10.2164/jandrol.05103]
28. Bieber A. Effects of chemotherapeutic agents for testicular cancer on male rat reproductive organs and spermatozoal numbers, motility, and morphology. 2005;
29. Vaisheva F, et al., Effects of the chemotherapeutic Agents for Non‐Hodgkin Lymphoma, Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone (CHOP), on the male rat reproductive system and progeny outcome. J Androl. 2007;28(4):578-87. [DOI:10.2164/jandrol.106.002428]
30. Kato M, et al., Sperm motion analysis in rats treated with adriamycin and its applicability to male reproductive toxicity studies. J Toxicol Sci. 2001;26(1):51-9. [DOI:10.2131/jts.26.51]
31. O'Flaherty C, et al., Impact of chemotherapeutics and advanced testicular cancer or Hodgkin lymphoma on sperm deoxyribonucleic acid integrity. Fertil Steril. 2010;94(4):1374-9. [DOI:10.1016/j.fertnstert.2009.05.068]
32. O'flaherty CM, et al., Sperm chromatin structure components are differentially repaired in cancer survivors. J Androl. 2012;33(4):629-36. [DOI:10.2164/jandrol.111.015388]
33. Shnorhavorian M, et al., Differential DNA methylation regions in adult human sperm following adolescent chemotherapy: potential for epigenetic inheritance. PLoS One. 2017;12(2):e0170085. [DOI:10.1371/journal.pone.0170085]
34. Nayak G, et al., Sperm abnormalities induced by pre‐pubertal exposure to cyclophosphamide are effectively mitigated by Moringa oleifera leaf extract. Andrologia. 2016;48(2):125-36. [DOI:10.1111/and.12422]
35. Vendramini V, Robaire B, Miraglia SM. Amifostine-doxorubicin association causes long-term prepubertal spermatogonia DNA damage and early developmental arrest. Hum Reprod. 2012;27(8):2457-66. [DOI:10.1093/humrep/des159]
36. Stukenborg J-B, et al., Cancer treatment in childhood and testicular function: the importance of the somatic environment. Endocr Connect. 2018;7(2):R69-87. [DOI:10.1530/EC-17-0382]
37. Heikens J, et al., Irreversible gonadal damage in male survivors of pediatric Hodgkin's disease. Cancer Interdiscip Int J Am Cancer Soc. 1996;78(9):2020-4. https://doi.org/10.1002/(SICI)1097-0142(19961101)78:9<2020::AID-CNCR25>3.0.CO;2-Y [DOI:10.1002/(SICI)1097-0142(19961101)78:93.0.CO;2-Y]
38. Talbot JA, et al., Luteinizing hormone pulsatility in men with damage to the germinal epithelium. Int J Androl. 1990;13(3):223-31. [DOI:10.1111/j.1365-2605.1990.tb00980.x]
39. Isaksson S, et al., High risk of hypogonadism in young male cancer survivors. Clin Endocrinol (Oxf). 2018;88(3):432-41. [DOI:10.1111/cen.13534]
40. Aslani F, et al., Resistance to apoptosis and autophagy leads to enhanced survival in Sertoli cells. MHR Basic Sci Reprod Med. 2017;23(6):370-80. [DOI:10.1093/molehr/gax022]
41. Tremblay AR, Delbes G. In vitro study of doxorubicin-induced oxidative stress in spermatogonia and immature Sertoli cells. Toxicol Appl Pharmacol. 2018;348:32-42. [DOI:10.1016/j.taap.2018.04.014]
42. Brilhante O, et al., Late morfofunctional alterations of the Sertoli cell caused by doxorubicin administered to prepubertal rats. Reprod Biol Endocrinol. 2012;10(1):1-16. [DOI:10.1186/1477-7827-10-79]
43. Stumpp T, Freymuller E, Miraglia SM. Sertoli cell morphological alterations in albino rats treated with etoposide during prepubertal phase. Microsc Microanal. 2008;14(3):225-35. [DOI:10.1017/S1431927608080318]
44. Stumpp T, Freymüller E, Miraglia SM. Sertoli cell function in albino rats treated with etoposide during prepubertal phase. Histochem Cell Biol. 2006;126(3):353-61. [DOI:10.1007/s00418-006-0168-3]
45. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-78. [DOI:10.1016/j.ejphar.2014.07.025]
46. Shokri V, et al., Evaluating the effects of acacetin versus a low dose of cisplatin drug on male reproductive system and kidney in mice: with emphasis on inflammation process. Andrologia. 2020;52(1):e13444. [DOI:10.1111/and.13444]
47. Kata FS. Effect of Cisplatin drug on sperm characterizes, spermatogenesis and sex hormones levels of male mice Mus musculus L. J Basrah Res. 2013;39(2A):112-24.
48. Brozovic A, Ambriović-Ristov A, Osmak M. The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit Rev Toxicol. 2010;40(4):347-59. [DOI:10.3109/10408441003601836]
49. Liu M, Hales BF, Robaire B. Effects of four chemotherapeutic agents, bleomycin, etoposide, cisplatin, and cyclophosphamide, on DNA damage and telomeres in a mouse spermatogonial cell line. Biol Reprod. 2014;90(4):71-2. [DOI:10.1095/biolreprod.114.117754]
50. Kohsaka T, et al., Efficacy of relaxin for cisplatin-induced testicular dysfunction and epididymal spermatotoxicity. Basic Clin Androl. 2020;30(1):1-13. [DOI:10.1186/s12610-020-0101-y]
51. Smart E, et al., Chemotherapy drugs cyclophosphamide, cisplatin and doxorubicin induce germ cell loss in an in vitro model of the prepubertal testis. Sci Rep. 2018;8(1):1-15. [DOI:10.1038/s41598-018-19761-9]
52. Yadav YC. Effect of cisplatin on pancreas and testes in Wistar rats: biochemical parameters and histology. Heliyon. 2019;5(8):e02247. [DOI:10.1016/j.heliyon.2019.e02247]
53. Thorn CF, et al., Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440. [DOI:10.1097/FPC.0b013e32833ffb56]
54. Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999;57(7):727-41. [DOI:10.1016/S0006-2952(98)00307-4]
55. Akinjo OO, Gant TW, Marczylo EL. Perturbation of epigenetic processes by doxorubicin in the mouse testis. Toxicol Res (Camb). 2016;5(4):1229-43. [DOI:10.1039/C6TX00078A]
56. Sakai K, et al., Effects of doxorubicin on sperm DNA methylation in mouse models of testicular toxicity. Biochem Biophys Res Commun. 2018;498(3):674-9. [DOI:10.1016/j.bbrc.2018.03.044]
57. Ahmed ZA, et al., Effects of quercetin, sitagliptin alone or in combination in testicular toxicity induced by doxorubicin in rats. Drug Des Devel Ther. 2019;13:3321. [DOI:10.2147/DDDT.S222127]
58. Özyilmaz Yay N, Şener G, Ercan F. Resveratrol treatment reduces apoptosis and morphological alterations in cisplatin induced testis damage. J Res Pharm. 2019;23(4). [DOI:10.12991/jrp.2019.170]
59. Haq AA, Nigar S, Rehman D. Potential of ascorbic acid as antioxidant on chemotherapeutic agent induced change in morphology of testes. J Pak Med Assoc. 2017;67(4):586-9.
60. Cabral REL, et al., Carnitine partially protects the rat testis against the late damage produced by doxorubicin administered during pre‐puberty. Andrology. 2014;2(6):931-42. [DOI:10.1111/andr.279]
61. Horwitz SB. Taxol (paclitaxel): mechanisms of action. Ann Oncol Off J Eur Soc Med Oncol. 1994;5:S3-6.
62. Sariözkan S, et al., Effects of Cinnamon (C. zeylanicum) Bark oil against taxanes-induced damages in sperm quality, testicular and epididymal oxidant/antioxidant balance, testicular apoptosis, and sperm DNA integrity. Nutr Cancer. 2016;68(3):481-94. [DOI:10.1080/01635581.2016.1152384]
63. Chatzidarellis E, et al., Effects of taxane-based chemotherapy on inhibin B and gonadotropins as biomarkers of spermatogenesis. Fertil Steril. 2010;94(2):558-63. [DOI:10.1016/j.fertnstert.2009.03.068]
64. D'souza UJ, Narayana K. Induction of seminiferous tubular atrophy by single dose of 5-fluorouracil (5-FU) in Wistar rats. Indian J Physiol Pharmacol. 2001;45(1):87-94.
65. Mao W-W, et al., Early morphological changes in the mouse testis induced by 5-fluorouracil. Zhonghua nan ke xue= Natl J Androl. 2009;15(12):1064-7.
66. Rao KS. 5-Fluorouracil (5-FU) induces the formation of giant cells and sloughin g of seminiferous epithelium in the rat testis. Indian J Physiol Pharmacol. 2000;44(3):317-22.
67. Takizawa S, Horii I. Endocrinological assessment of toxic effects on the male reproductive system in rats treated with 5-fluorouracil for 2 or 4 weeks. J Toxicol Sci. 2002;27(1):49-56. [DOI:10.2131/jts.27.49]
68. Hall AG, Tilby MJ. Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of haematological malignancies. Blood Rev. 1992;6(3):163-73. [DOI:10.1016/0268-960X(92)90028-O]
69. Oyagbemi AA, et al., Gallic acid protects against cyclophosphamide‐induced toxicity in testis and epididymis of rats. Andrologia. 2016;48(4):393-401. [DOI:10.1111/and.12459]
70. Al-Salih HA, et al., The Pathological Features of Cyclophosphamide Induced Multi-Organs Toxicity in Male Wister Rats. Sys Rev Pharm. 2020;11(6):45-9. [DOI:10.31838/srp.2020.6.10]
71. Al-Niwehee NA. Effect of Cyclophosphamide Treatment During the Embryonic Period on Fertility of Adult Male Mice. Iraqi J Sci. 2019;60(4):706-14.
72. Nayak G, et al., Ethanolic extract of Moringa oleifera leaves alleviate cyclophosphamide-induced testicular toxicity by improving endocrine function and modulating cell specific gene expression in mouse testis. J Ethnopharmacol. 2020;259:112922. [DOI:10.1016/j.jep.2020.112922]
73. Pryzant RM, et al., Long-term reduction in sperm count after chemotherapy with and without radiation therapy for non-Hodgkin's lymphomas. J Clin Oncol. 1993;11(2):239-47. [DOI:10.1200/JCO.1993.11.2.239]
74. Buchanan JD, Fairley KF, Barrie JU. Return of spermatogenesis after stopping cyclophosphamide therapy. Lancet. 1975;306(7926):156-7. [DOI:10.1016/S0140-6736(75)90059-8]
75. Baumgartner A, et al., Parallel evaluation of doxorubicin‐induced genetic damage in human lymphocytes and sperm using the comet assay and spectral karyotyping. Mutagenesis. 2004;19(4):313-8. [DOI:10.1093/mutage/geh032]
76. Uderzo C, et al., Correlation of gonadal function with histology of testicular biopsies at treatment discontinuation in childhood acute leukemia. Med Pediatr Oncol. 1984;12(2):97-100. [DOI:10.1002/mpo.2950120207]
77. Aubier F, et al., Male gonadal function after chemotherapy for solid tumors in childhood. J Clin Oncol. 1989;7(3):304-9. [DOI:10.1200/JCO.1989.7.3.304]
78. Amin A, Hamza AA. Effects of Roselle and Ginger on cisplatin‐induced reproductive toxicity in rats. Asian J Androl. 2006;8(5):607-12. [DOI:10.1111/j.1745-7262.2006.00179.x]
79. Hamzeh M, et al., Cerium oxide nanoparticles protect cyclophosphamide-induced testicular toxicity in mice. Int J Prev Med. 2019;10. [DOI:10.4103/ijpvm.IJPVM_184_18]
80. Karmakar PC, et al., Chemotherapeutic drugs alter functional properties and proteome of mouse testicular germ cells in vitro. Toxicol Sci. 2018;164(2):465-76. [DOI:10.1093/toxsci/kfy098]
81. Yang H, et al., The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res. 2018;37(1):1-10. [DOI:10.1186/s13046-017-0664-4]
82. Al-Jebari Y, et al., Cancer therapy and risk of congenital malformations in children fathered by men treated for testicular germ-cell cancer: A nationwide register study. PLoS Med. 2019;16(6):e1002816. [DOI:10.1371/journal.pmed.1002816]
83. Nord CB, et al., Cancer therapy and risk of congenital malformations in children fathered by men treated for testicular germ-cell cancer: A nationwide register study. 2019;
84. Meistrich ML. Risks of genetic damage in offspring conceived using spermatozoa produced during chemotherapy or radiotherapy. Andrology. 2020;8(3):545-58. [DOI:10.1111/andr.12740]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.