دوره 7، شماره 2 - ( 1401 )                   دوره 7 شماره 2 صفحات 94-87 | برگشت به فهرست نسخه ها

Research code: 0
Ethics code: 0
Clinical trials code: 0


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amini Mahabadi A, Saye naderi M, Nateghi M R. Current status of induced Pluripotent Stem Cells Differentiation into Sperm and Oocyte as a Therapy Method for Infertility: Advantages and Disadvantages. SJMR 2022; 7 (2) : 3
URL: http://saremjrm.com/article-1-262-fa.html
امینی مهابادی علیرضا، صنایع نادری مریم، ناطقی محمدرضا. وضعیت فعلی تمایز سلول‌های بنیادی پرتوان القایی به اسپرم و تخمک به عنوان یک روش درمانی برای ناباروری: مزایا و معایب. مجله تحقيقات پزشكي صارم. 1401; 7 (2) :87-94

URL: http://saremjrm.com/article-1-262-fa.html


1- مسئول امور اداری، دانشگاه پیام نور اردستان، اصفهان، ایران
2- مرکز تحقیقات زنان، زایمان و ناباروری صارم، بیمارستان فوق تخصصی صارم، دانشگاه علوم پزشکی ایران، تهران، ایران و پژوهشکده سلولی و مولکولی و سلول های بنیادی صارم (SCRC)، بیمارستان فوق تخصصی صارم، تهران، ایران
3- مرکز تحقیقات زنان، زایمان و ناباروری صارم، بیمارستان فوق تخصصی صارم، دانشگاه علوم پزشکی ایران، تهران، ایران و پژوهشکده سلولی و مولکولی و سلول های بنیادی صارم (SCRC)، بیمارستان فوق تخصصی صارم، تهران، ایران ، dr.mr.nateghi@gmail.com
چکیده:   (1284 مشاهده)
مقدمه: ناباروری یک نگرانی عمده برای سلامت عمومی است که 10 تا 15 درصد از زوج‌های سن باروری در جهان را تحت تأثیر قرار می‌دهد. فاکتورهای مردانه عمدتاً به دلیل اختلالات مورفولوژیکی و عملکردی اسپرم از جمله بلوغ زودرس، بیماری‌های ارثی و مشکلات ساختاری مانند انسداد بیضه، آسیب به دستگاه تناسلی منجر به اختلال عملکرد اسپرم و عوامل محیطی و روانی می‌باشند. در حالیکه، فاکتورهای مربوط به زنان اختلال تخمک گذاری، رحم یا لوله فالوپ غیرطبیعی، اندومتریت، نارسایی اولیه تخمدان و چسبندگی لگن هستند. بر اساس این تحقیقات، سلول‌های بنیادی تحت شرایط خاصی می‌توانند به سلول‌های زایا تمایز پیدا کنند که این روش می‌توانند راه‌گشا برای درمان ناباروری باشند.
نتیجه گیری: محققان در سراسر جهان بهترین تلاش خود را برای استانداردسازی پروتکل‌های تمایز به کار می‌گیرند تا به نتایج ایمن‌تر و مطلوب‌تر دست یابند. با این حال، قبل از اینکه منتظر استفاده از آن‌ها در انسان باشیم، هنوز تلاش‌های زیادی برای موفقیت در ایجاد فرزندان کاملاً کاربردی و زنده از این سلول‌های تمایز یافته درون آزمایشگاهی لازم خواهد بود.
شماره‌ی مقاله: 3
متن کامل [PDF 1370 kb]   (400 دریافت)    
نوع مقاله: مروری تحلیلی | موضوع مقاله: بيماری‌های زنان
دریافت: 1401/4/10 | پذیرش: 1401/4/21 | انتشار: 1401/12/16

فهرست منابع
1. 1. Mouka A, et al., In vitro gamete differentiation from pluripotent stem cells as a promising therapy for infertility. Stem cells and development, 2016. 25(7): p. 509-521. [DOI:10.1089/scd.2015.0230]
2. Wang J, et al., Stem cells as a resource for treatment of infertility-related diseases. Current Molecular Medicine, 2019. 19(8): p. 539-546. [DOI:10.2174/1566524019666190709172636]
3. Katz DJ, Teloken P, and Shoshany O, Male infertility-the other side of the equation. Australian family physician, 2017. 46(9): p. 641-646.
4. Wojsiat J, et al., The role of oxidative stress in female infertility and in vitro fertilization. Postepy higieny i medycyny doswiadczalnej (Online), 2017. 71: p. 359-366. [DOI:10.5604/01.3001.0010.3820]
5. Gassei K and Orwig KE, Experimental methods to preserve male fertility and treat male factor infertility. Fertility and sterility, 2016. 105(2): p. 256-266. [DOI:10.1016/j.fertnstert.2015.12.020]
6. Lee Y and Kang E, Stem cells and reproduction. BMB reports, 2019. 52(8): p. 482-489. [DOI:10.5483/BMBRep.2019.52.8.141]
7. Zhang P-Y, et al., Generation of artificial gamete and embryo from stem cells in reproductive Medicine. Frontiers in Bioengineering and Biotechnology, 2020. 8: p. 781. [DOI:10.3389/fbioe.2020.00781]
8. Picton HM, et al., A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys. Human reproduction, 2015. 30(11): p. 2463-2475. [DOI:10.1093/humrep/dev190]
9. Sugawa F, et al., Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile. The EMBO journal, 2015. 34(8): p. 1009-1024. [DOI:10.15252/embj.201488049]
10. Mahabadi JA, et al., Retinoic acid and/or progesterone differentiate mouse induced pluripotent stem cells into male germ cells in vitro. Journal of Cellular Biochemistry, 2020. 121(3): p. 2159-2169. [DOI:10.1002/jcb.29439]
11. Mahabadi JA, et al., The role of microRNAs in embryonic stem cell and induced pluripotent stem cell differentiation in male germ cells. Journal of cellular physiology, 2019. 234(8): p. 12278-12289. [DOI:10.1002/jcp.27990]
12. Zhang D, et al., Potential spermatogenesis recovery with bone marrow mesenchymal stem cells in an azoospermic rat model. International journal of molecular sciences, 2014. 15(8): p. 13151-13165. [DOI:10.3390/ijms150813151]
13. Enderami SE, et al., Generation of insulin‐producing cells from human‐induced pluripotent stem cells using a stepwise differentiation protocol optimized with platelet‐rich plasma. Journal of cellular physiology, 2017. 232(10): p. 2878-2886. [DOI:10.1002/jcp.25721]
14. Mahabadi JA, et al., Derivation of male germ cells from induced pluripotent stem cells by inducers: A review. Cytotherapy, 2018. 20(3): p. 279-290. [DOI:10.1016/j.jcyt.2018.01.002]
15. Hayashi K, et al., Reconstitution of mouse oogenesis in a dish from pluripotent stem cells. Nature protocols, 2017. 12(9): p. 1733-1744. [DOI:10.1038/nprot.2017.070]
16. Gunn DD and Bates GW, Evidence-based approach to unexplained infertility: a systematic review. Fertility and sterility, 2016. 105(6): p. 1566-1574. e1561. [DOI:10.1016/j.fertnstert.2016.02.001]
17. Ohannessian A, et al., Unexplained infertility: live-birth's prognostic factors to determine the ART management. Minerva ginecologica, 2017. 69(6): p. 526-532. [DOI:10.23736/S0026-4784.17.04085-0]
18. Cissen M, et al., Assisted reproductive technologies for male subfertility. Cochrane Database of Systematic Reviews, 2016(2). [DOI:10.1002/14651858.CD000360.pub5]
19. Goossens E, Van Saen D, and Tournaye H, Spermatogonial stem cell preservation and transplantation: from research to clinic. Human reproduction, 2013. 28(4). [DOI:10.1093/humrep/det039]
20. Ray A, et al., Unexplained infertility: an update and review of practice. Reproductive biomedicine online, 2012. 24(6): p. 591-602. [DOI:10.1016/j.rbmo.2012.02.021]
21. Inhorn MC and Patrizio P, Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Human reproduction update, 2015. 21(4): p. 411-426. [DOI:10.1093/humupd/dmv016]
22. Somigliana E, et al., Age-related infertility and unexplained infertility: an intricate clinical dilemma. Human Reproduction, 2016. 31(7): p. 1390-1396. [DOI:10.1093/humrep/dew066]
23. Smith RP, Lipshultz LI, and Kovac JR, Stem cells, gene therapy, and advanced medical management hold promise in the treatment of male infertility. Asian journal of andrology, 2016. 18(3): p. 364. [DOI:10.4103/1008-682X.179249]
24. Chen D, et al., Modeling human infertility with pluripotent stem cells. Stem cell research, 2017. 21: p. 187-192. [DOI:10.1016/j.scr.2017.04.005]
25. Jaenisch R and Young R, Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 2008. 132(4): p. 567-582. [DOI:10.1016/j.cell.2008.01.015]
26. Hu S and Shan G, LncRNAs in stem cells. Stem cells international, 2016. 2016. [DOI:10.1155/2016/2681925]
27. Zomer HD, et al., Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. Stem cells and cloning: advances and applications, 2015. 8: p. 125. [DOI:10.2147/SCCAA.S88036]
28. Mahabadi JA, et al., Application of induced pluripotent stem cell and embryonic stem cell technology to the study of male infertility. Journal of cellular physiology, 2018. 233(11): p. 8441-8449. [DOI:10.1002/jcp.26757]
29. Lee Y and Kang E, Stem cells and reproduction. BMB reports, 2019. 52(8): p. 482. [DOI:10.5483/BMBRep.2019.52.8.141]
30. Navara CS, et al., Pedigreed primate embryonic stem cells express homogeneous familial gene profiles. Stem cells, 2007. 25(11): p. 2695-2704. [DOI:10.1634/stemcells.2007-0286]
31. Takahashi K, et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell, 2007. 131(5): p. 861-872. [DOI:10.1016/j.cell.2007.11.019]
32. Takahashi K, et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Obstetrical & Gynecological Survey, 2008. 63(3): p. 153. [DOI:10.1097/01.ogx.0000305204.97355.0d]
33. Magnuson T, et al., Pluripotent embryonic stem cell lines can be derived from tw5/tw5 blastocysts. Nature, 1982. 298(5876): p. 750-753. [DOI:10.1038/298750a0]
34. Kim D-S, et al., Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Reviews and Reports, 2010. 6(2): p. 270-281. [DOI:10.1007/s12015-010-9138-1]
35. Chin MH, et al., Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell stem cell, 2009. 5(1): p. 111-123. [DOI:10.1016/j.stem.2009.06.008]
36. Mattis VB and Svendsen CN, Induced pluripotent stem cells: a new revolution for clinical neurology? The Lancet Neurology, 2011. 10(4): p. 383-394. [DOI:10.1016/S1474-4422(11)70022-9]
37. Volarevic V, et al., Stem cells as new agents for the treatment of infertility: current and future perspectives and challenges. BioMed Research International, 2014. 2014. [DOI:10.1155/2014/507234]
38. Kavyasudha C, et al., Clinical applications of induced pluripotent stem cells-stato attuale. Cell Biology and Translational Medicine, Volume 1, 2018: p. 127-149. [DOI:10.1007/5584_2018_173]
39. Li J, et al., Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells. Journal of Hematology & Oncology, 2014. 7(1): p. 1-18. [DOI:10.1186/s13045-014-0050-z]
40. Stadtfeld M and Hochedlinger K, Induced pluripotency: history, mechanisms, and applications. Genes & development, 2010. 24(20): p. 2239-2263. [DOI:10.1101/gad.1963910]
41. Nie Y-Z, et al., Recapitulation of hepatitis B virus-host interactions in liver organoids from human induced pluripotent stem cells. EBioMedicine, 2018. 35: p. 114-123. [DOI:10.1016/j.ebiom.2018.08.014]
42. Griswold MD, Spermatogenesis: the commitment to meiosis. Physiological reviews, 2016. 96(1): p. 1-17. [DOI:10.1152/physrev.00013.2015]
43. Miyauchi H, et al., Bone morphogenetic protein and retinoic acid synergistically specify female germ‐cell fate in mice. The EMBO journal, 2017. 36(21): p. 3100-3119. [DOI:10.15252/embj.201796875]
44. Hayashi K, et al., Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell, 2011. 146(4): p. 519-532. [DOI:10.1016/j.cell.2011.06.052]
45. Ohta H, et al., In vitro expansion of mouse primordial germ cell‐like cells recapitulates an epigenetic blank slate. The EMBO journal, 2017. 36(13): p. 1888-1907. [DOI:10.15252/embj.201695862]
46. Ishikura Y, et al., In vitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells. Cell Stem Cell, 2021. 28(12): p. 2167-2179. e2169. [DOI:10.1016/j.stem.2021.08.005]
47. Hou J, et al., Generation of male differentiated germ cells from various types of stem cells. Reproduction, 2014. 147(6): p. 179-188. [DOI:10.1530/REP-13-0649]
48. Yang S, et al., Derivation of male germ cells from induced pluripotent stem cells in vitro and in reconstituted seminiferous tubules. Cell Proliferation, 2012. 45(2): p. 91-100. [DOI:10.1111/j.1365-2184.2012.00811.x]
49. Zhu Y, et al., Generation of male germ cells from induced pluripotent stem cells (iPS cells): an in vitro and in vivo study. Asian J Androl, 2012. 14(4): p. 574-579. [DOI:10.1038/aja.2012.3]
50. Li P, et al., Differentiation of induced pluripotent stem cells into male germ cells in vitro through embryoid body formation and retinoic acid or testosterone induction. BioMed research international, 2013. 2013. [DOI:10.1155/2013/608728]
51. Kook Y-M, et al., Design of biomimetic cellular scaffolds for co-culture system and their application. Journal of tissue engineering, 2017. 8: p. 2041731417724640. [DOI:10.1177/2041731417724640]
52. Van Neerven SG, et al., Human Schwann cells seeded on a novel collagen-based microstructured nerve guide survive, proliferate, and modify neurite outgrowth. BioMed Research International, 2014. 2014. [DOI:10.1155/2014/493823]
53. Lee S-W, et al., Self-reprogramming of spermatogonial stem cells into pluripotent stem cells without microenvironment of feeder cells. Molecules and cells, 2018. 41(7): p. 631-638.
54. Lee J, Cuddihy MJ, and Kotov NA, Three-dimensional cell culture matrices: state of the art. Tissue Engineering Part B: Reviews, 2008. 14(1): p. 61-86. [DOI:10.1089/teb.2007.0150]
55. Cai H, et al., In vitro and in vivo differentiation of induced pluripotent stem cells into male germ cells. Biochemical and Biophysical Research Communications, 2013. 433(3): p. 286-291. [DOI:10.1016/j.bbrc.2013.02.107]
56. Imamura M, et al., Induction of primordial germ cells from mouse induced pluripotent stem cells derived from adult hepatocytes. Molecular reproduction and development, 2010. 77(9): p. 802-811. [DOI:10.1002/mrd.21223]
57. Yang Y, et al., Directed Mouse Embryonic Stem Cells into Leydig-Like Cells Rescue Testosterone-Deficient Male Rats In Vivo. Stem cells and development, 2014. 24(4): p. 459-470. [DOI:10.1089/scd.2014.0370]
58. Zhou Q, et al., Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell stem cell, 2016. 18(3): p. 330-340. [DOI:10.1016/j.stem.2016.01.017]
59. Fang F, et al., Human induced pluripotent stem cells and male infertility: an overview of current progress and perspectives. Human Reproduction, 2018. 33(2): p. 188-195. [DOI:10.1093/humrep/dex369]
60. Hayashi K and Surani MA, Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro. Development, 2009. 136(21): p. 3549-3556. [DOI:10.1242/dev.037747]
61. Nichols J and Smith A, Naive and primed pluripotent states. Cell stem cell, 2009. 4(6): p. 487-492. [DOI:10.1016/j.stem.2009.05.015]
62. Park TS, et al., Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem cells, 2009. 27(4): p. 783-795. [DOI:10.1002/stem.13]
63. Bharti D, et al., In vitro generation of oocyte like cells and their in vivo efficacy: how far we have been succeeded. Cells, 2020. 9(3): p. 557. [DOI:10.3390/cells9030557]
64. Virant-Klun I, et al., Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation, 2008. 76(8): p. 843-856. [DOI:10.1111/j.1432-0436.2008.00268.x]
65. Fowler PA, et al., Gene expression analysis of human fetal ovarian primordial follicle formation. The Journal of Clinical Endocrinology & Metabolism, 2009. 94(4): p. 1427-1435. [DOI:10.1210/jc.2008-2619]
66. Liu T, et al., CD44+/CD105+ human amniotic fluid mesenchymal stem cells survive and proliferate in the ovary long-term in a mouse model of chemotherapy-induced premature ovarian failure. International journal of medical sciences, 2012. 9(7): p. 592-602. [DOI:10.7150/ijms.4841]
67. Jung D, et al., In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nature communications, 2017. 8(1): p. 1-13. [DOI:10.1038/ncomms15680]
68. Bahmanpour S, et al., Effect of BMP 4 preceded by retinoic acid and co‐culturing ovarian somatic cells on differentiation of mouse embryonic stem cells into oocyte‐like cells. Development, Growth & Differentiation, 2015. 57(5): p. 378-388. [DOI:10.1111/dgd.12217]
69. Tan H, et al., Retinoic acid promotes the proliferation of primordial germ cell-like cells differentiated from mouse skin-derived stem cells in vitro. Theriogenology, 2016. 85(3): p. 408-418. [DOI:10.1016/j.theriogenology.2015.09.002]
70. Parvari S, et al., Differentiation of mouse ovarian stem cells toward oocyte-like structure by coculture with granulosa cells. Cellular Reprogramming (Formerly" Cloning and Stem Cells"), 2016. 18(6): p. 419-428. [DOI:10.1089/cell.2016.0013]
71. Dyce PW, et al., Analysis of oocyte-like cells differentiated from porcine fetal skin-derived stem cells. Stem cells and development, 2011. 20(5): p. 809-819. [DOI:10.1089/scd.2010.0395]
72. Song S-H, et al., Characterization of porcine multipotent stem/stromal cells derived from skin, adipose, and ovarian tissues and their differentiation in vitro into putative oocyte-like cells. Stem cells and development, 2011. 20(8): p. 1359-1370. [DOI:10.1089/scd.2010.0203]
73. Lee Y-M, et al., Overexpression of Oct4 in porcine ovarian stem/stromal cells enhances differentiation of oocyte-like cells in vitro and ovarian follicular formation in vivo. Journal of Ovarian Research, 2016. 9(1): p. 1-16. [DOI:10.1186/s13048-016-0233-z]
74. do Nascimento Costa JJ, et al., Expression of markers for germ cells and oocytes in cow dermal fibroblast treated with 5-azacytidine and cultured in differentiation medium containing BMP2, BMP4 or follicular fluid. Zygote, 2017. 25(3): p. 341-357. [DOI:10.1017/S0967199417000211]
75. Singhal D, et al., Generation of germ cell-like cells and oocyte-like cells from goat induced pluripotent stem cells. J Stem Cell Res Ther, 2015. 5(279): p. 2.
76. Qiu P, et al., Gender depended potentiality of differentiation of human umbilical cord mesenchymal stem cells into oocyte‐Like cells in vitro. Cell Biochemistry and Function, 2013. 31(5): p. 365-373. [DOI:10.1002/cbf.2981]
77. Liu T, et al., Induction of E-cadherin+ human amniotic fluid cell differentiation into oocyte-like cells via culture in medium supplemented with follicular fluid. Molecular Medicine Reports, 2014. 10(1): p. 21-28. [DOI:10.3892/mmr.2014.2199]
78. Yu Z, et al., Dazl promotes germ cell differentiation from embryonic stem cells. Journal of molecular cell biology, 2009. 1(2): p. 93-103. [DOI:10.1093/jmcb/mjp026]
79. Mahabadi, Javad Amini, et al. "Derivation of male germ cells from induced pluripotent stem cells by inducers: A review." Cytotherapy 20.3 (2018): 279-290. [DOI:10.1016/j.jcyt.2018.01.002]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به {مجله تحقيقات پزشكي صارم} می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | {Sarem Journal of Medicine Research}

Designed & Developed by : Yektaweb