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Pharmacogenetics plays a crucial role in personalized treatment. This field investigates 

how genetic variations influence drug responses, focusing on how genes affect the body's 

reaction to medications. This study explores the impact of genetic polymorphisms on the 

metabolism of efavirenz, a drug used in the treatment of HIV. The objective is to compare 

the effects of CYP450 polymorphisms on the metabolism of efavirenz using a network 

meta-analysis approach. This research, conducted following PRISMA guidelines, 

examines the pharmacogenetic effects on the efficacy and prevention of adverse drug 

reactions (ADRs) of efavirenz. The search strategy included a review of observational 

and interventional studies without language or publication date restrictions. Inclusion 

criteria involved studies assessing drug concentration, AUC, ADRs, and genotype 

comparisons. Two independent researchers selected studies and managed data. Data 

analysis was performed using STATA software, employing a combination of methods to 

assess heterogeneity and the overall impact of genetic polymorphisms. For continuous 

and binary outcomes, SMDs and ORs or HRs were used, respectively. Egger’s test was 

conducted to identify publication bias. In this systematic review and meta-analysis, a 

comprehensive assessment of the relationship between genetic variants and efavirenz 

metabolism was conducted. Out of 19,861 records, 96 studies were reviewed. These 

studies, from various countries, had sample sizes ranging from 20 to 6,045 participants. 

The results indicated that specific variants in genes such as CYP2B6 were significantly 

associated with changes in plasma efavirenz concentrations. These findings underscore 

the importance of genetic influences on drug metabolism in the treatment of HIV and the 

management of its side effects. This extensive systematic review and network meta-

analysis evaluated the role of various genes in the metabolism of efavirenz and 

rivaroxaban. The analyses revealed that specific polymorphisms in the CYP2B6 gene 

significantly affect the plasma concentration of efavirenz, which is crucial for improving 

HIV treatment and reducing drug-related side effects. These findings highlight the 

significance of pharmacogenomic research and the consideration of genetic diversity in 

therapeutic management. 
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Introduction 

Efavirenz, a cornerstone antiretroviral drug used in the 

treatment of HIV-1 infection, is metabolized 

predominantly by the cytochrome P450 (CYP450) 

enzyme system. Genetic polymorphisms in CYP450 

enzymes, particularly CYP2B6, significantly 

influence efavirenz pharmacokinetics, affecting both 

drug efficacy and the occurrence of adverse drug 

reactions (ADRs) (1-3). Understanding these genetic 

variations is crucial for optimizing efavirenz therapy, 

enhancing treatment outcomes, and minimizing side 

effects through personalized medicine approaches (4-

6). 

Pharmacogenetics, the study of how genetic variations 

influence drug response, has emerged as a pivotal field 

in precision medicine. By identifying genetic markers 

associated with drug metabolism, clinicians can tailor 

treatments to individual genetic profiles, potentially 

improving therapeutic efficacy and reducing the risk 

of ADRs (7-9). Efavirenz serves as an exemplary case 

for the application of pharmacogenetics due to its 

narrow therapeutic index and the substantial 

variability in its metabolism among individuals (3, 10-

12). 

The objective of this study was to conduct a 

comprehensive network meta-analysis to evaluate the 

impact of CYP450 polymorphisms on the metabolism 

of efavirenz. We aimed to determine whether a 

pharmacogenetic approach could improve the efficacy 

and prevent ADRs associated with efavirenz. By 

systematically reviewing and analyzing data from 

various studies, we sought to elucidate the relationship 

between specific genetic variants and efavirenz 

pharmacokinetics, providing insights that could 

inform clinical decision-making and personalized 

treatment strategies. 

 

Methods 

Study Question 
The study aimed to answer the question: Is the 

pharmacogenetic approach effective in improving the 

efficacy and preventing adverse drug reactions 

(ADRs) of efavirenz? 

 

Search Strategy 
All observational and interventional studies, including 

cross-sectional, case-control, clinical trials, and cohort 

studies, were searched in PubMed, Web of Science, 

and Scopus. The search strategy, outlined in 

supplementary Table 1, focused on keywords related 

to "efavirenz," "genetics," "pharmacogenomics," 

"pharmacogenetics," and "personalized medicine." No 

restrictions were applied regarding language and 

publication date, and translations were arranged for 

non-English and non-Persian documents if necessary. 

Two independent researchers conducted the search to 

evaluate the impact of the pharmacogenetic approach 

on preventing ADRs associated with efavirenz. 

 

Inclusion Criteria  
Studies were included if they: Examined the 

concentration of efavirenz, the area under the time-

concentration curve (AUC), and ADRs as outcomes, 

compared different genotypes, had study designs, 

including case-control, cohort, clinical trial, and cross-

sectional, included human participants without any 

restrictions on language and publication date, and had 

no age restrictions for study participants. Non-relevant 

publications or those not meeting the criteria were 

excluded, as well as duplicate articles. 

 

Study Selection 

Two independent researchers conducted a three-step 

data refinement process, including title review, 

abstract review, and full-text analysis, to select 

relevant studies according to the inclusion criteria. 

Discrepancies were resolved through consultation 

with a third expert. 

 

Information Management  
The information from the scientific documents 

identified was managed using Endnote software for 

easy storage. Relevant data were extracted and entered 

into Excel sheets, including reference details, study 

type, sample size, exposure, outcome, age, and gender 

distribution of participants. Two independent 

researchers participated in this process, and any 

discrepancies were resolved through consultation with 

a third expert. 

 

Data Analysis 

Statistical analysis was performed using STATA 

version 14. Statistical significance was considered at a 

p-value of ≤ 0.05. Various methods were employed to 

evaluate heterogeneity and the overall impact of 

genetic polymorphisms on drug metabolism and 

associated ADRs. For continuous outcomes, such as 

plasma concentration levels, standardized mean 

differences (SMDs) with 95% confidence intervals 

(CIs) were calculated. For binary outcomes, such as 

the occurrence of ADRs, odds ratios (ORs) and hazard 

ratios (HRs) were used. 

 Heterogeneity was assessed using the I² statistic and 

corresponding p-values to determine the 

appropriateness of data pooling across studies. A 

fixed-effects model was used when heterogeneity was 

low (I² <50% and p-value > 0.10), indicating sufficient 

similarity among studies to justify combining results. 

Conversely, a random-effects model was applied 

when significant heterogeneity was detected (I² ≥ 50% 
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or p-value ≤ 0.10), acknowledging that differences in 

findings could stem from variations in study 

populations, methodologies, or other factors. 

Additionally, Egger's test was conducted to assess the 

presence of publication bias in the studies included in 

the meta-analysis. This test helped identify any 

skewness in the data that might result from a tendency 

to publish certain types of studies. Including this bias 

assessment ensured the robustness and reliability of 

our meta-analytical findings. 

Using these statistical methods and heterogeneity 

assessments provided a comprehensive understanding 

of the data, enabling us to draw informed conclusions 

about the impact of genetic polymorphisms on drug 

metabolism and the likelihood of experiencing ADRs. 

This rigorous approach was crucial in ensuring the 

accuracy and scientific integrity of our study results. 

 

Results 

Systematic Review  
A total of 19,861 records were identified based on our 

search strategy. After removing duplicate studies and 

evaluating them based on titles, abstracts, and full 

texts, 76 studies were included in our analysis to assess 

the correlation between genetic variants and adverse 

drug reactions (ADRs) of efavirenz (8, 13-86). Figure 

1 shows the PRISMA flow diagram of the systematic 

search. 

 

Study Characteristics 

In this systematic review, we analyzed a wide range of 

studies from various countries to evaluate the effects 

of CYP2B6 on the metabolism of efavirenz. A total of 

76 studies were included in this review, encompassing 

clinical trials, cohort studies, case-control studies, 

retrospective studies, and cross-sectional studies. 

These studies were conducted in various countries, 

with sample sizes ranging from 20 participants to 6045 

participants. The studies were conducted in diverse 

geographical regions, including Ethiopia, Serbia, the 

United Kingdom, Brazil, Ghana, South Korea, 

Thailand, Cameroon, Zambia, Germany, Chile, the 

Netherlands, the United States, Italy, Japan, 

Switzerland, South Africa, Spain, China, Hungary, 

Botswana, Papua New Guinea, Qatar, Kenya, 

Rwanda, Tanzania, and India. These findings reflect 

extensive global research efforts aimed at 

understanding the impact of CYP2B6 on efavirenz 

metabolism, underscoring the significance of this 

research area in the context of HIV treatment and 

pharmacogenomics. Table 1 presents the 

characteristics of included studies. 

 

Impact of Variants on Efavirenz Metabolism 

In our systematic review of the effects of genetic 

polymorphisms on efavirenz concentrations, we 

examined a total of 64 variants across different genes. 

Among these, the ABCA1 gene was evaluated for the 

c.4760A>G SNP. The ABCB1 gene was analyzed for 

the following SNPs: c.1236C>T, c.193A>G, 

c.2677G>T/A, c.4046A>G, c.3435C>T, and 

c.4036A>G. The c.-24C>T SNP in the ABCC2 gene 

was reviewed, and the c.540C>T variant in the CAR 

gene was analyzed. Variants in the CYP1A2 gene, 

including c.-163C>A, c.-2159G>A, and c.-739T>G, 

were also included. 

The MDR1 gene was reviewed for the c.2677G>T 

SNP, while the NR1I2 and NR1I3 genes were studied 

for c.7635A>G, c.1089T>C, and c.8784T>C variants, 

respectively. The PXR gene was analyzed for the 

c.63396C>T SNP, and the SLCO1B1 gene was 

examined for c.388A>G and c.521T>C. Variants in 

SULT1A1 (c.638G>A) and UGT2B7 (c.-327G>A, 

c.735A>G, c.802T>C, c.-161C>T, c.211G>T) were 

also assessed. 

In this pharmacogenetic meta-analysis of efavirenz, 

we investigated the impact of various polymorphisms 

on the metabolism rate of efavirenz and plasma 

concentration changes. Our analysis revealed several 

significant findings, elucidating the role of specific 

genetic variants in efavirenz metabolism. 

Among the genes studied, ABCB1 showed multiple 

significant associations. The c.1236C>T SNP was 

associated with increased plasma efavirenz 

concentrations (SMD 1.38; 95% CI 1.10–1.76), 

whereas c.4046A>G was linked to decreased plasma 

efavirenz levels (SMD -2.03; 95% CI -1.76 to -2.42). 

Similarly, the c.4036A>G polymorphism in ABCB1 

was also associated with reduced plasma efavirenz 

concentrations (SMD -0.82; 95% CI -0.68 to -0.97). 

These findings indicate that specific genetic changes 

in the ABCB1 gene significantly impact efavirenz 

metabolism. 

CYP2B6 also showed notable significant associations. 

Some of the SNPs analyzed were linked to increased 

plasma efavirenz levels. For instance, the c.516G>T 

variant had a substantial effect size (SMD 2.45; 95% 

CI 2.05 to 2.86), indicating a strong influence on 

efavirenz metabolism. Conversely, c.15582C>T and 

c.18492C>T were associated with decreased plasma 

efavirenz concentrations, highlighting the importance 

of CYP2B6 variations in efavirenz metabolism. 

Genetic variations in UGT2B7, such as c.735A>G and 

c.802T>C, were linked to reduced plasma efavirenz 

levels (SMD -1.22, -0.92), indicating their significant 

role in regulating efavirenz metabolism. Other genes, 

such as CYP2A6 and CAR, also showed significant 

associations, suggesting their influence on efavirenz 

metabolism. Conversely, several SNPs in genes like 

ABCA1, CYP1A2, and SLCO1B1 did not show 

significant effects on efavirenz metabolism, 

underscoring the specificity of certain polymorphisms 

in this process. Table 2 demonstrates the results of 

meta-analysis. 
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Findings from Network Meta-Analysis on 

Polymorphisms Associated with Poor Metabolism 

As shown in Figure 2, the c.516G>T polymorphism in 

the CYP2B6 gene significantly increases efavirenz 

concentrations more than the c.21563C>T, c.785A>G, 

and c.983T>C polymorphisms in the same gene. 

Additionally, the results indicated that the c.64C>T 

polymorphism in the CYP2B6 gene is more effective 

in increasing efavirenz concentrations compared to the 

c.785A>G and c.983T>C polymorphisms in the same 

gene. 

 

Indirect Effects Results Using Network Map 
The indirect effects were examined using a network 

map, as illustrated in Figure 3. 

 

Rank Analysis 

To address the question of which variants should be 

prioritized for limited analysis, a rank analysis was 

conducted. The results are shown in the rankogram in 

Figure 4. 

 

Network meta-analysis findings on polymorphisms 

related to rapid metabolism 

As depicted in Figure 5, the analysis of ABCB1 

(c.4046A>G) better predicts higher efavirenz doses 

compared to ABCB1 (c.4036A>G) and UGT2B7 

(c.802T>C). Subsequently, a network map related to 

the rapid metabolism of efavirenz was generated. The 

results of this analysis are shown in Figure 6. 

 

Rank Analysis for Rapid Metabolism 
To determine which variants would be the most 

predictive if a limited number needed to be analyzed, 

a rank analysis was performed. The results are 

displayed in the rankogram in Figure 7. 

 

Discussion 
The findings of this study underscore the significant 

impact of CYP450 polymorphisms on the metabolism 

of efavirenz, with particular emphasis on the CYP2B6 

gene. Our network meta-analysis, which included 96 

studies and a diverse sample size ranging from 20 to 

6,045 participants across various countries, provides a 

comprehensive evaluation of the pharmacogenetic 

landscape influencing efavirenz metabolism.  

The role of CYP2B6 polymorphisms, particularly the 

c.516G>T variant, in altering efavirenz plasma 

concentrations has been corroborated by previous 

studies. Rotger et al. (2005) and Haas et al. (2004) 

demonstrated that individuals with the c.516G>T 

polymorphism exhibit significantly higher efavirenz 

plasma levels, which can lead to increased efficacy but 

also a higher risk of adverse drug reactions (ADRs) 

(87, 88). Our findings align with these results, further 

validating the critical role of this SNP in efavirenz 

metabolism. 

In addition to CYP2B6, our study highlights 

significant associations of ABCB1 gene 

polymorphisms with efavirenz plasma levels. The 

c.1236C>T and c.4046A>G variants were found to 

significantly affect efavirenz concentrations, with the 

former increasing and the latter decreasing the plasma 

levels. This is consistent with the work of Mukonzo et 

al. (2009), who reported similar effects of ABCB1 

polymorphisms on efavirenz pharmacokinetics (89). 

Our meta-analysis extends these findings by providing 

a more robust, statistically significant evaluation 

through the inclusion of a larger and more diverse 

sample size. 

Contrary to some earlier studies (21, 24, 28, 48, 90), 

our analysis did not find significant effects of certain 

polymorphisms, such as those in the ABCA1 and 

SLCO1B1 genes, on efavirenz metabolism. This 

discrepancy could be attributed to differences in study 

populations, methodologies, and sample sizes. For 

example, Kwara et al. (2009) suggested a potential 

role of SLCO1B1 polymorphisms in efavirenz 

metabolism, but our broader analysis indicates that 

these effects may not be as substantial or consistent 

across different populations (91). 

The results of our network meta-analysis have 

important implications for personalized medicine in 

the treatment of HIV. Identifying patients with 

specific CYP2B6 and ABCB1 polymorphisms can 

help clinicians predict which individuals are likely to 

experience higher efavirenz plasma levels and, 

consequently, a greater risk of ADRs. This 

information can be used to tailor efavirenz dosing 

more precisely, optimizing therapeutic outcomes 

while minimizing side effects (40, 92-95). 

Moreover, the rank analysis and network maps 

generated in this study provide a framework for 

prioritizing genetic variants in clinical settings. By 

focusing on the most impactful polymorphisms, such 

as CYP2B6 c.516G>T and ABCB1 c.1236C>T, 

healthcare providers can implement more efficient and 

cost-effective pharmacogenetic testing protocols. This 

approach not only enhances patient care but also aligns 

with the principles of precision medicine, ensuring 

that treatments are tailored to individual genetic 

profiles (1, 2, 4, 7-9, 96). 

While our study provides robust evidence on the 

impact of CYP450 polymorphisms on efavirenz 

metabolism, several limitations must be 

acknowledged. First, the heterogeneity in study 

designs, populations, and methodologies could 

influence the generalizability of our findings. 

Although we employed rigorous statistical methods to 

assess and account for heterogeneity, further research 

is needed to validate these results in more 

homogeneous and controlled settings. 

Additionally, our analysis primarily focused on 

genetic polymorphisms, but other factors such as drug-

drug interactions, environmental influences, and 
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patient adherence to medication also play crucial roles 

in efavirenz pharmacokinetics. Future studies should 

aim to integrate these variables to provide a more 

comprehensive understanding of efavirenz 

metabolism. 

Lastly, the rapid advancements in genomic 

technologies and the discovery of new genetic variants 

necessitate continuous updates to pharmacogenetic 

knowledge. Ongoing research and updates to 

databases will be essential to keep pace with these 

developments and to refine personalized treatment 

strategies for HIV and other conditions. 

 

Conclusion 

In conclusion, our network meta-analysis reinforces 

the pivotal role of CYP450 polymorphisms, 

particularly in the CYP2B6 and ABCB1 genes, in 

influencing efavirenz metabolism. These findings 

highlight the importance of incorporating 

pharmacogenetic testing into clinical practice to 

enhance the efficacy and safety of HIV treatment. By 

leveraging genetic insights, healthcare providers can 

move towards more personalized and precise 

therapeutic approaches, ultimately improving patient 

outcomes and reducing the burden of ADRs. Future 

research should continue to explore the complex 

interplay of genetic, environmental, and behavioral 

factors in drug metabolism, ensuring that 

pharmacogenomics remains at the forefront of 

personalized medicine. 

 

Figure legends: 

 

 

 
Figure 1. PRISMA diagram of the systematic search. 

 

 
Figure 2. Network meta-analysis results table.  The upper 

numbers are the difference of SMD and the lower numbers 

are the 95% CI. The significant ones are marked with gray 

color. 

 

 
Figure 3. Network map 

 

 
Figure 4. Rankogram of the examined variants 

 

 
Figure 5. Network meta-analysis results table. The upper 

numbers are the difference of SMD and the lower numbers 

are the 95% CI. The significant ones are marked with gray 

color. 
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Figure 6. Network map 

 

 
Figure 7. Rankogram of the examined variants 

 

 

 

Table 1. Characteristics of included studies 

row Author name  Year  Study design Provenance  Sample 

size 

1 Abiy Habtewold 2011 Clinical Trial Ethiopia 163 

2 Adeniyi 

Olagunju 

2014 Cohort Serbia 93 

3 Alan Winston 2014 Randomized 

Controlled Trial 

United 

Kingdom 

31 

4 Antonio V.C. 

Coelho 

2018 Case-Control Brazil 176 

5 Antonio V.C. 

Coelho 

2013 Retrospective Brazil 187 

6 Awewura Kwara 2008 Cohort Ghana 65 

7 Awewura Kwara 2009 Cohort Ghana 94 

8 Byungwook Kim 2021 Cohort Korea 1012 

9 C. Sukasem 2013 Cohort Thailand 149 

10 C. Sukasem 2014 Cohort Thailand 100 

11 Carine Nguefeu 

Nkenfou 

2019 Cohort Cameroon 122 

12 Carolin Bolton 

Moore 

2017 Prospective Zambia 47 

13 Chonlaphat 

Sukasem 

2012 Prospective Thailand 52 

14 Christopher 

Nyakutira 

2007 Cohort Zimbabwe 74 

15 Christoph Wyen 2011 Cohort Germany 373 

16 Christoph Wyen 2008 Cohort Germany 186 

17 Claudia P. Cortes 2012 Cohort Chile 219 

18 Daniel F. Carr 2010 Cohort Chile 219 

19 Daniela Poblete 2021 Retrospective Chile 67 

20 David Burger 2005 Cohort Netherlands 225 

21 David W. Haas 2004 Cohort USA 152 

22 David W. Haas 2005 Retrospective US, Italy 340 

23 David W. Haas 2009 Cohort US (African 

Americans) 

34 

24 David W. Haas 2014 Prospective US 84 

25 David W. Haas 2004 Cohort USA 152 

26 David W. Haas 2009 Cohort US (African 

Americans) 

34 

27 David W. Haas 2005 Retrospective US, Italy 340 

28 David W. Haas 2009 Cohort US (African 

Americans) 

34 

29 Eliford Ngaimisi 2013 Prospective Ethiopia 285 

30    Tanzania 209 

31 Emily R. 

Holzinger 

2012 Cohort US 856 

32 Emile Bienvenu 2013 Cohort Rwanda 76 

33 Fred S. Sarfo 2013 Retrospective 

Cohort 

Ghana 800 

34 G Yimer 2011 Prospective Cohort Ethiopia 285 

35 Hiroyuki 

Gatanaga 

2007 Cohort Japan 456 

36 Jacques Fellay 2002 Cohort Switzerland 123 

37 Jenna Johnston 2019 Cohort South Africa 135 

38 Jose J. G. Marin 2020 Cohort Spain 32 

39 Julia di Iulio 2009 Cohort Switzerland 169 

40 Jun Chen 2010 Cohort China 120 

41 Katalin Mango 2022 Cohort Hungary 119 

42 Katalin Mango 2022 Cohort Hungary 119 

43 Kiyoto Tsuchiya 2004 Cohort Japan 23 

44 Kin Wang To 2009 Cohort China 79 

45 Laura Dickinson 2015 Cohort UK 606 
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47 M. Rotger 2007 Cohort Switzerland 169 

48 M. Rotger 2007 Cohort Switzerland 169 

49 Manojranjenni 

Chetty 

2018 Cohort UK 30 

50 Maria Alice 

Freitas Queiroz 

2016 Cohort Brazil 185 

51 Marelize Swart 2013 Cohort South Africa 464 

52 Margalida 

Rotger 

2005 Cohort Switzerland 167 

53 Melissa A. 

Frasco 

2010 Prospective US 91 

54 Monica Gandhi 2012 Cohort USA 111 

55 Monkgomotsi J 

Maseng 

2021 Retrospective 

Case-Control 

Botswana 227 

56 Monpat 

Chamnanphon 

2021 Cohort Thailand 149 

57 Musa Otieno 

Ngayo 

2022 Cross-sectional Kenya 312 

58 Natália Bordin 

Andriguetti 

2021 Cohort Papua New 

Guinea 

156 

59 Philippe R. 

Mutwa 

2012 Cohort Rwanda 97 

60 Puthen Veettil 

Jithesh 

2022 Cohort? Qatar 6,045 

61 Rong Chen 2020 Cohort China 184 

62 Sabina Mugusi 2018 Cohort Tanzania 458 

63 Sahapat 

Barusrux 

2020 Cohort Thailand 149 

64 Salvador 

Cabrera 

Figueroa 

2010 Cohort Spain 32 

65 Sandra G. Heil 2012 Cohort Netherlands 54 

66 Sonia Rodriguez-

Novoa 

2005 Cohort Spain 104 

67 Sumonmal 

Uttayamakul 

2012 Cohort Thailand 124 

68 Tanuja N 

Gengiah 

2015 Prospective South Africa 54 

69 Tailah Bernardo 

de Almeida 

2018 Retrospective Brazil 225 

70 TALISE E. 

MÜLLER 

2017 Cohort Brazil 89 

71 Tracy R. Glass 2012 Prospective Switzerland 37 

72 TrIstan Lindfelt 2010 Cohort USA 20 

73 Vanessa S 

Mattevi 

2016 Cohort Brazil 34 

74 Wondmagegn 

Tamiru Tadesse 

2022 Case-Control Ethiopia 240 

75 Xianmin Meng 2015 Cohort China 322 

76 YalIe Elizabeth 

KurIan 

2022 Prospective India 369 

 

 

Table 2. Findings of the meta-analysis of the impact of genetic variants on 

plasma concentration of efavirenz 

Gene SNP 

Effect on the 

pace of 

efavirenz 

metabolism 

Plasma 

concentration 

(standardized 

mean 

difference) 

ABCA1 c.4760A>G not significant 
0.25; 95% CI 

-0.92 to 1.42 

ABCB1 c. 1236C>T 

Associated 

with higher 

plasma 

efavirenz 

concentrations 

1.38; 95% CI 

1.10–1.76 

ABCB1 c. 4046A>G 

Associated 

with lower 

plasma 

efavirenz 

concentrations 

-2.03; 95% CI 

-1.76 to -2.42 

ABCB1 c.4036A>G 

Associated 

with lower 

plasma 

efavirenz 

concentrations 

-0.82; 95% CI 

-0.68 to -0.97 

ABCB1 c. 193A>G not significant 
0.12; 95% CI 

-1.05 to 1.29 

ABCB1 
c. 2677 

G>T/A 
not significant 

-0.05; 95% CI 

-1.38 to 1.28 

ABCB1 c.3435 C>T not significant 
0.18; 95% CI 

-1.12 to 1.48 

ABCC2 c.-24C>T not significant 
0.03; 95% CI 

-1.21 to 1.27 

CAR c. 540C>T 

Associated 

with lower 

plasma 

efavirenz 

concentrations 

-1.25; 95% CI 

-1.05 to -1.46 

CYP1A2 c. -163C>A not significant 
-0.09; 95% CI 

-1.36 to 1.18 

CYP1A2 c. -2159G>A not significant 
0.31; 95% CI 

-1.02 to 1.64 

CYP1A2 c. -739T > G not significant 
-0.02; 95% CI 

-1.25 to 1.21 

CYP1A2 c. –163C>A not significant 
0.14; 95% CI 

-1.19 to 1.47 

CYP2A6 c. 1093G>A 

Associated 

with higher 

plasma 

efavirenz 

concentrations 

1.09; 95% CI 

0.93 to 1.25 

CYP2A6 c. 1436G>T not significant 
-0.11; 95% CI 

-1.44 to 1.22 

CYP2A6 c.1093G>A not significant 
0.29; 95% CI 

-0.99 to 1.57 

CYP2A6 c.-48T>G not significant 
0.08; 95% CI 

-1.16 to 1.32 

CYP2A6 c. 1836G>T not significant 
-0.15; 95% CI 

-1.51 to 1.21 

CYP2B6 c. 21563C>T 

Associated 

with higher 

plasma 

efavirenz 

concentrations 

1.12; 95% CI 

0.96 to 1.28 

CYP2B6 c. 516G>T 

Associated 

with higher 

plasma 

efavirenz 

concentrations 

2.45; 95% CI 

2.05 to 2.86 

CYP2B6 c. 64C>T 

Associated 

with higher 

plasma 

efavirenz 

concentrations 

1.57; 95% CI 

1.32 to 1.82 

CYP2B6 c. 785 A>G 

Associated 

with higher 

plasma 

efavirenz 

concentrations 

0.42; 95% CI 

0.19 to 0.65 

CYP2B6 c. 983T>C 

Associated 

with higher 

plasma 

efavirenz 

concentrations 

0.33; 95% CI 

0.12 to 0.54 

CYP2B6 c. 15582C>T 

Associated 

with lower 

plasma 

efavirenz 

concentrations 

-1.18; 95% CI 

-1.00 to -1.36 

CYP2B6 c. 18492C>T 

Associated 

with lower 

plasma 

efavirenz 

concentrations 

-1.67; 95% CI 

-1.45 to -1.88 
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CYP2B6 
c. 1295-

913G>A 
not significant 

0.20; 95% CI 

-1.10 to 1.50 

CYP2B6 c. 1375A>G not significant 
-0.01; 95% CI 

-1.28 to 1.26 

CYP2B6 c. 1459C>T not significant 
0.22; 95% CI 

-1.08 to 1.52 

CYP2B6 
c. 

171+4335T>C 
not significant 

-0.07; 95% CI 

-1.32 to 1.19 

CYP2B6 c. 526 G>T not significant 
0.27; 95% CI 

-1.05 to 1.59 

CYP2B6 c.*1355A>G not significant 
0.09; 95% CI 

-1.15 to 1.33 

CYP2B6 c. 1172T>A not significant 
-0.12; 95% CI 

-1.47 to 1.23 

CYP2B6 c. 136 A>G not significant 
0.24; 95% CI 

-1.07 to 1.55 

CYP2B6 c. 415G>A not significant 
-0.03; 95% CI 

-1.29 to 1.23 

CYP3A4 c. 392A>G not significant 
0.17; 95% CI 

-1.13 to 1.47 

CYP3A4 c.878T>C not significant 
-0.08; 95% CI 

-1.34 to 1.19 

CYP3A5 c. 31611C>T not significant 
0.26; 95% CI 

-1.04 to 1.56 

CYP3A5 c. 6986A>G not significant 
0.10; 95% CI 

-1.14 to 1.34 

CYP3A5 c. 713G>A not significant 
-0.13; 95% CI 

-1.49 to 1.23 

CYP3A5 c. 14690G>A not significant 
0.23; 95% CI 

-1.09 to 1.55 

MDR1 c. 2677G>T not significant 
-0.04; 95% CI 

-1.30 to 1.22 

NR1I2 c. 7635A>G not significant 
0.16; 95% CI 

-1.14 to 1.46 

NR1I3 c. 1089T>C not significant 
0.20; 95% CI 

-0.95 to 1.35 

NR1I3 c. 8784T>C not significant 
-0.15; 95% CI 

-1.10 to 0.80 

PXR c. 63396C>T not significant 
0.05; 95% CI 

-0.75 to 0.85 

SLCO1B1 c.388A>G not significant 
-0.30; 95% CI 

-1.25 to 0.65 

SLCO1B1 c.521T>C not significant 
0.12; 95% CI 

-0.88 to 1.12 

SULT1A1 c.638G>A not significant 
-0.25; 95% CI 

-1.20 to 0.70 

UGT2B7 c. 735A>G 

Associated 

with lower 

plasma 

efavirenz 

concentrations 

-1.22; 95% CI 

-1.05 to -1.40 

UGT2B7 c. 802T>C 

Associated 

with lower 

plasma 

efavirenz 

concentrations 

-0.92; 95% CI 

-0.76 to -1.08 

UGT2B7 c. -327G>A not significant 
0.18; 95% CI 

-0.82 to 1.18 

UGT2B7 c.-161C>T not significant 
-0.22; 95% CI 

-1.17 to 0.73 

UGT2B7 c.211G>T not significant 
0.08; 95% CI 

-0.87 to 1.03 

UGT2B7 c.372A>G not significant 
-0.10; 95% CI 

-1.05 to 0.85 

 

 

 

 
Supplementary table 1. Search strategy  

Summary 

#1 “Efavirenz” 

#2 “cytochrome” OR “CYP2B6” OR "CYP3A4" OR “CYP2A6” 

OR "CYP2C9" OR "CYP2A19" 

#3 #1 AND #2 

Filters: No language restrictions; No Time limitations; 

WOS 

# Web of Science Search Strategy (v0.1) 

# Database: Web of Science Core Collection 

# Entitlements: 

- WOS.IC: 1993 to 2022 

- WOS.CCR: 1985 to 2022 

- WOS.SCI: 1900 to 2022 

- WOS.AHCI: 1975 to 2022 

- WOS.BHCI: 2005 to 2022 

- WOS.BSCI: 2005 to 2022 

- WOS.ESCI: 2015 to 2022 

- WOS.ISTP: 1990 to 2022 

- WOS.SSCI: 1956 to 2022 

- WOS.ISSHP: 1990 to 2022 

# Searches: 

1: Efavirenz (All Fields) AND cytochrome (All Fields) Date Run: Tue 

Dec 06 2022 12:04:07 GMT+0330 (Iran, Tehran) 

2: Efavirenz (All Fields) AND CYP2B6 (All Fields) Date Run: Tue Dec 

06 2022 12:05:17 GMT+0330 (Iran, Tehran) 

3: Efavirenz (All Fields) AND CYP3A4 (All Fields) Date Run: Tue Dec 

06 2022 12:07:51 GMT+0330 (Iran, Tehran) 

4: Efavirenz (All Fields) AND CYP2A6 (All Fields) Date Run: Tue Dec 

06 2022 12:08:49 GMT+0330 (Iran, Tehran) 

5: Efavirenz (All Fields) AND CYP2C9 (All Fields) Date Run: Tue Dec 

06 2022 12:11:17 GMT+0330 (Iran, Tehran) 

6: Efavirenz (All Fields) AND CYP2A19 (All Fields) Date Run: Tue 

Dec 06 2022 12:14:25 GMT+0330 (Iran, Tehran) 

Scopus 

( TITLE-ABS-KEY ( efavirenz )  AND  TITLE-ABS-

KEY ( cytochrome ) )  AND  ( LIMIT-TO ( DOCTYPE ,  "ar" ) )   

( TITLE-ABS-KEY ( efavirenz )  AND  TITLE-ABS-KEY ( cyp2b6 ) )  

AND  ( LIMIT-TO ( DOCTYPE ,  "ar" ) )   

( TITLE-ABS-KEY ( efavirenz )  AND  TITLE-ABS-KEY ( cyp3a4 ) )  

AND  ( LIMIT-TO ( DOCTYPE ,  "ar" ) ) 

( TITLE-ABS-KEY ( efavirenz )  AND  TITLE-ABS-KEY ( cyp2a6 ) )  

AND  ( LIMIT-TO ( DOCTYPE ,  "ar" ) )   

( TITLE-ABS-KEY ( efavirenz )  AND  TITLE-ABS-KEY ( cyp2c9 ) )  

AND  ( LIMIT-TO ( DOCTYPE ,  “ar” ) ) 

( TITLE-ABS-KEY ( efavirenz )  AND  TITLE-ABS-KEY ( cyp2c19 ) )  

AND  ( LIMIT-TO ( DOCTYPE ,  “ar” ) )   

PubMed 

(“efavirenz”[Supplementary Concept] OR “efavirenz”[All Fields]) AND 

(“1 7 6ytochrome”[All Fields] OR “cytochromes”[MeSH Terms] OR 

“cytochromes”[All Fields] OR “cytochrome”[All Fields] OR 

“cytochromic”[All Fields]) OR ("efavirenz"[Supplementary Concept] 

OR "efavirenz"[All Fields]) AND ("cytochrome p 450 cyp2b6"[MeSH 

Terms] OR ("cytochrome"[All Fields] AND "p 450"[All Fields] AND 

"cyp2b6"[All Fields]) OR "cytochrome p 450 cyp2b6"[All Fields] OR 

"cyp2b6"[All Fields]) OR ("efavirenz"[Supplementary Concept] OR 

"efavirenz"[All Fields]) AND ("cytochrome p 450 cyp3a"[MeSH 

Terms] OR ("cytochrome"[All Fields] AND "p 450"[All Fields] AND 

"cyp3a"[All Fields]) OR "cytochrome p 450 cyp3a"[All Fields] OR 

"cyp3a4"[All Fields]) OR ("efavirenz"[Supplementary Concept] OR 

"efavirenz"[All Fields]) AND ("cytochrome p 450 cyp2a6"[MeSH 

Terms] OR ("cytochrome"[All Fields] AND "p 450"[All Fields] AND 

"cyp2a6"[All Fields]) OR "cytochrome p 450 cyp2a6"[All Fields] OR 

"cyp2a6"[All Fields]) OR ("efavirenz"[Supplementary Concept] OR 

"efavirenz"[All Fields]) AND ("cytochrome p 450 cyp2c9"[MeSH 

Terms] OR ("cytochrome"[All Fields] AND "p 450"[All Fields] AND 

"cyp2c9"[All Fields]) OR "cytochrome p 450 cyp2c9"[All Fields] OR 

"cyp2c9"[All Fields]) OR ("efavirenz"[Supplementary Concept] OR 

"efavirenz"[All Fields]) AND ("cytochrome p 450 cyp2c19"[MeSH 

Terms] OR ("cytochrome"[All Fields] AND "p 450"[All Fields] AND 

"cyp2c19"[All Fields]) OR "cytochrome p 450 cyp2c19"[All Fields] OR 

"cyp2c19"[All Fields]) 
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