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Pregnancy represents a unique immunological state where pregnant women develop 

tolerance mechanisms to avoid fetal rejection. Various mechanisms modulate the 

maternal immune system to prevent this rejection. Despite these mechanisms, infertility 

affects approximately 8-12% of reproductive-age couples, particularly those 

experiencing recurrent implantation failure and recurrent pregnancy loss. Assisted 

reproductive techniques have significantly advanced in recent decades, yet success rates 

remain relatively low. Endometrial immune profiling is crucial in understanding 

infertility and constitutes a distinct microenvironment during pregnancy. Consequently, 

research has focused on analyzing specific biomarkers, cytokines, and identifying 

immune system disorders within this context. This approach aims to provide insights for 

developing personalized treatments. This review examines cellular immune markers, 

molecular/genetic markers in endometrial studies, and autoantibodies involved in 

infertility. 
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1. Introduction 

Miscarriage, the most common pregnancy 

complication, often occurs unexpectedly and can 

have devastating psychological and physical effects 

(1). It is reported that about 10-20% of clinically 

confirmed pregnancies end in miscarriage (3-5). 

Potential causes of spontaneous pregnancy loss 

include metabolic/endocrinological abnormalities, 

genetic factors, anatomical issues, immune 

disorders, thrombophilia, male factors, and 

psychological factors (2, 6). While some couples' 

miscarriages can be managed, about 50% of cases 

have no clearly defined clinical etiology (7). Given 

that the fetus is genetically distinct from the mother, 

specific immunological events must occur to enable 

the mother to carry the fetus to term. Disruptions in 

these immunological mechanisms can lead to 

recurrent miscarriages. Reduced maternal immune 

tolerance toward the fetus may contribute to 

recurrent pregnancy losses (4). Immunology offers 

potential solutions to common reproductive 

medicine problems, including implantation issues, 

infertility, miscarriage, and complications later in 

pregnancy (8). Various immunological factors, such 

as autoantibodies and changes in uterine immune 

cell levels, are implicated in immune-related 

infertility. This review explores available 

immunological tests in reproductive disorders and 

miscarriage to provide optimal diagnostic strategies 

for patients. 

 

2. Cellular Immune Markers: 

2.1. NK Cells  
Natural killer (NK) cells, a fundamental component of 

the innate immune system, play a pivotal role in 

maintaining maternal-fetal tolerance (9). These cells 

are instrumental in warding off infections during 

pregnancy (10). Within the unique uterine 

environment, NK cells are crucial in fostering a 

conducive setting for pregnancy. They produce 

various factors that are essential for the regulation of 

placental invasion and the development of maternal 

vasculature. Uterine NK cells are characterized by 

their CD56^superbright, CD16^- phenotype (11, 12), 

distinguishing them from peripheral blood NK 

(pbNK) cells, which predominantly consist of two 

subsets: CD56^dim (95%) and CD56^bright (5%) 

(14). The resemblance of decidual NK (dNK) cells to 

the CD56^bright subset of pbNK cells suggests a 

shared lineage, likely originating from CD56^bright 

pbNK cells that migrate to the uterus and undergo 

differentiation within the uterine microenvironment 

(15). During implantation and placentation, uterine 

NK (uNK) cells constitute approximately 70% of the 

leukocyte population and interact with trophoblast 

ligands via specific receptors (16).  

Aberrant activity of uNK cells can disrupt vascular 

patterns, lead to ischemic conditions, and elevate 

oxidative stress, all of which are particularly 

detrimental during early trophoblast invasion (11, 17). 

uNK cells are pivotal for the establishment of normal 

early placentation and facilitate vascular remodeling at 

the conclusion of the implantation process. 

Insufficient trophoblast invasion and altered vascular 

remodeling are primary pathological features in 

conditions such as preeclampsia and are thought to 

contribute to recurrent pregnancy loss (RPL) (18). 

Furthermore, uNK cells support trophoblast invasion 

and promote vascular remodeling by inducing 

extravillous trophoblast (EVT) cells (19) and T 

regulatory (Treg) cells (FoxP3^+Treg), enhancing 

feto-maternal tolerance. 

The interaction between maternal killer-cell 

immunoglobulin-like receptors (KIRs) expressed on 

uNK cells and fetal human leukocyte antigen-C (HLA-

C) on EVT cells regulates placentation (20). The 

KIR/HLA interface is complex and highly 

polymorphic, influencing susceptibility to various 

diseases, including infectious diseases, autoimmune 

conditions, malignancies, and transplant rejection (21-

24). KIR genes modulate the immune response at the 

feto-maternal interface, with KIR A lacking 

stimulatory receptors, while KIR B encompasses both 

stimulatory and inhibitory receptors. The KIR AA 

genotype is predominantly inhibitory, whereas KIR 

AB and BB genotypes express a mix of activating and 

inhibitory receptors. Studies indicate that both 

activating and inhibitory KIR-HLA combinations are 

implicated in pregnancy loss (25, 26). 

Each pregnancy involves a unique interaction between 

inherited maternal KIR genes and potentially varied 

paternal HLA-C groups, even from the same father, 

creating a dynamic balance between trophoblast and 

uNK cells. A retrospective analysis of 291 women 

undergoing 1,304 cycles of in vitro fertilization (IVF) 

revealed a correlation between the inhibitory KIR-AA 

haplotype, miscarriage, and implantation failure post-

double embryo transfer (27). 

Additionally, elevated uNK cell density in 

endometrial biopsies from patients with recurrent 

miscarriage (RM) compared to controls has been 

reported in several studies (28-30). Hence, HLA-C and 

KIR genotyping could be beneficial for selecting third-

party gametes or gestational carriers to mitigate 

pregnancy complications, including preeclampsia 

(PE). Clinically, the implications of uNK cell 

dynamics in the reproductive process should be 

considered for patients at risk of PE, and the frequency 
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of prenatal examinations for these individuals might 

need to be increased (31). 

 

2.2. TH1/TH2 Dynamics 
T Despite their critical roles in pregnancy, the levels 

of non-Th1/2 cytokines, such as those produced by 

regulatory T cells (Treg) and Th17 cells, are less 

frequently measured. Th17 cells defend against 

pathogens and are crucial during pregnancy; 

stimulation of IL-17 production by Th17 cells 

enhances progesterone secretion and tissue 

invasiveness (43). Th17 cells also activate decidual 

natural killer (dNK) cells and impair the vascular 

reactivity of uterine arteries, potentially leading to 

embryo resorption (44). Elevated levels of IL-17+ T 

cells have been detected in women with RPL (45), and 

Th17 cells show increased expressions of IL-6, IL-17, 

and IL-23 in cases of unexplained infertility, 

correlating negatively with fertility outcomes (46). 

Treg cells (CD4+CD25+Foxp3+), on the other hand, 

mediate immunosuppression influenced by Th1 and 

Th17 cells and regulate maternal-fetal immune 

tolerance. These cells are often diminished in RPL 

patients (32). Differences in Treg/Th17 immune 

profiles have been noted between women with RIF 

and those who are normally fertile. Treatment with 

Prednisone has been observed to shift the Treg/Th17 

balance towards Treg dominance, promoting 

favorable pregnancy outcomes (48). While promising, 

clinical data on Treg and TH17 roles in fertility are 

limited, necessitating further research." 

B cells are critical in pregnancy, serving vital roles in 

humoral immunity and antibody production which 

support normal pregnancy development. However, B 

cells can also contribute to adverse obstetric outcomes 

such as pregnancy loss, preeclampsia, intrauterine 

growth restriction, stillbirth, and preterm birth, 

predominantly through autoantibody production (49-

51). Despite the known involvement of B cell 

dysfunction in benign female reproductive pathologies 

such as endometriosis, research has primarily 

addressed peripheral B cells rather than those in the 

endometrial or tissue-specific contexts (52-54). 

Evidence indicates that endometrial B cells play a role 

in the normal development of the endometrium and are 

also present in endometrial samples from women with 

reproductive disorders. Conditions like infertility and 

endometriosis are linked with a broad spectrum of 

autoimmune diseases, generally resulting from an 

expanded population of autoreactive B cells (55-58). 

The presence of endometrial plasma cells is frequently 

utilized as a diagnostic marker for chronic 

endometritis (CE), an inflammatory disorder of the 

endometrium (59-62). 

Contrary to the common perception that B cells are 

scarce or nonexistent in the endometrium, studies 

demonstrate consistent expression of endometrial B 

cells in the normal cyclic endometrium. These cells are 

also found in endometrial tissue from women 

suffering from endometriosis, infertility, repeated 

implantation failure (RIF), recurrent pregnancy loss 

(RPL), endometritis, and other conditions such as 

abnormal uterine bleeding, endometrial polyps, and 

uterine fibroids (63, 64). 

secretion of granulocyte-macrophage colony-

stimulating factor (GM-CSF) from the uterine 

epithelium, leading to potential abortion and toxicity 

(39, 40). Neopterin serves as an indicator of pro-

inflammatory immune response; elevated levels in 

fluids such as cerebrospinal fluid, urine, and serum can 

activate Th1 cells, promoting immunogenic 

stimulation during pregnancy and contributing to RPL 

through the associated production of reactive oxygen 

species (41, 42). Although the ELISA technique is 

seldom utilized clinically for monitoring Neopterin 

levels, routine assessment during pregnancy could 

enhance prognostic outcomes (34) (Figure 1). 

 

 
Figure-1. The role of Th1 and Th2 cell responses in fertility and infertility 

 

2.3. Treg/TH17 Interactions 

Despite their critical roles in pregnancy, the levels of 

non-Th1/2 cytokines, such as those produced by 

regulatory T cells (Treg) and Th17 cells, are less 

frequently measured. Th17 cells defend against 

pathogens and are crucial during pregnancy; 

stimulation of IL-17 production by Th17 cells 

enhances progesterone secretion and tissue 

invasiveness (43). Th17 cells also activate decidual 

natural killer (dNK) cells and impair the vascular 

reactivity of uterine arteries, potentially leading to 

embryo resorption (44). Elevated levels of IL-17+ T 

cells have been detected in women with RPL (45), and 

Th17 cells show increased expressions of IL-6, IL-17, 

and IL-23 in cases of unexplained infertility, 

correlating negatively with fertility outcomes (46). 

Treg cells (CD4+CD25+Foxp3+), on the other hand, 

mediate immunosuppression influenced by Th1 and 

Th17 cells and regulate maternal-fetal immune 

tolerance. These cells are often diminished in RPL 

patients (32). Differences in Treg/Th17 immune 

profiles have been noted between women with RIF 

and those who are normally fertile. Treatment with 

Prednisone has been observed to shift the Treg/Th17 

balance towards Treg dominance, promoting 

favorable pregnancy outcomes (48). While promising, 

clinical data on Treg and TH17 roles in fertility are 

limited, necessitating further research." 
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B cells are critical in pregnancy, serving vital roles in 

humoral immunity and antibody production which 

support normal pregnancy development. However, B 

cells can also contribute to adverse obstetric outcomes 

such as pregnancy loss, preeclampsia, intrauterine 

growth restriction, stillbirth, and preterm birth, 

predominantly through autoantibody production (49-

51). Despite the known involvement of B cell 

dysfunction in benign female reproductive pathologies 

such as endometriosis, research has primarily 

addressed peripheral B cells rather than those in the 

endometrial or tissue-specific contexts (52-54). 

Evidence indicates that endometrial B cells play a role 

in the normal development of the endometrium and are 

also present in endometrial samples from women with 

reproductive disorders. Conditions like infertility and 

endometriosis are linked with a broad spectrum of 

autoimmune diseases, generally resulting from an 

expanded population of autoreactive B cells (55-58). 

The presence of endometrial plasma cells is frequently 

utilized as a diagnostic marker for chronic 

endometritis (CE), an inflammatory disorder of the 

endometrium (59-62). 

Contrary to the common perception that B cells are 

scarce or nonexistent in the endometrium, studies 

demonstrate consistent expression of endometrial B 

cells in the normal cyclic endometrium. These cells are 

also found in endometrial tissue from women 

suffering from endometriosis, infertility, repeated 

implantation failure (RIF), recurrent pregnancy loss 

(RPL), endometritis, and other conditions such as 

abnormal uterine bleeding, endometrial polyps, and 

uterine fibroids (63, 64). 

 
Table 1. Type of cellular immune markers in infertility 

Cellular 

immune 

markers 

Definition          Mechanism of action 

                

   NK cell 

one of the innate 

immune cells that 

participate in 

maternal-fetal 

tolerance while 

protecting 

pregnancy from 

infection 

 Regulate placental invasion and 

maternal vascular development. 

 Account for the majority of 

leukocytes in the process of 

implantation and placentation. 

 Establishment of normal early 

placentation through vascular 

remodeling. 

 Regulate trophoblast invasion and 

enhance vascular remodeling induced 

by EVT cells and Tregs. 

 Regulated Placentation by 

interactions between maternal KIRs 

expressed by uNK cells and fetal 

HLA-C molecules expressed by EVT 

cells. 

             

 

               

TH1/TH2 

An essential 

component of the 

adaptive immune 

system in the 

peripheral blood can 

be defined by their 

cytokine production 

profile. Th1 cells 

produce IFN-γ, 

TNF-α, IL-2. / Th2 

cells produce IL-4, 

IL-5, IL-6, IL-10, 

IL-13 

 Pregnancy is associated with a Th2 

response, while a Th1 response lead 

to embryo rejection. 

 IFN-γ production leads to the 

activation of macrophages and 

production of signaling mediators 

induces the apoptosis, suppresses the 

trophoblast growth rate and inhibit 

the secretion of GM-CSF and Thus, 

leading to pregnancy termination and 

toxicity. 

            

 

               

Treg/TH17 

Tregs and Th17 cells 

are two CD4+ T Cell 

subsets with 

antagonist effects. 

Th17 cells promote 

inflammation, 

 Their cytokine products play a role in 

successful implantation. 

 IL-17 produced by TH17 increased 

capacities of progesterone secretion 

and tissue invasion and leading to 

whereas Tregs are 

crucial in 

maintaining immune 

homeostasis. 

embryo resorption by induce 

activation of dNK cells and impair 

vascular reactivity of uterine arteries. 

 Treg cells suppress Th1-and Th17-

mediated immunity and lead to 

maternal immune tolerance to the 

fetus. 

                

       B Cell 

B cells make 

antibodies in 

response to antigens. 

Evidence suggests that B cells is important 

in the normal endometrium and 

endometrium obtained from women with 

reproductive pathologies. 

 

3. Autoantibodies: 

3.1. Anti-Phospholipid Antibody (APA) 

Antiphospholipid syndrome (APS) is an autoimmune 

disorder characterized by the production of 

antiphospholipid antibodies (aPLs), which are 

associated with thrombosis and adverse pregnancy 

outcomes (65). The primary aPLs identified in APS 

are anticardiolipin antibodies (aCLs), lupus 

anticoagulant (LA), and anti-β2-glycoprotein I 

antibodies (aβ2GPI). These antibodies can disrupt 

reproductive processes by affecting oocyte 

development, embryo morphology, uterine 

receptivity, and decidualization, thereby potentially 

leading to subfertility (66-68). 

Diagnostic criteria for APS are divided into clinical 

and laboratory categories. Clinically, APS is indicated 

by vascular thrombosis or specific pregnancy 

complications, such as fetal death post-10 weeks, 

preterm delivery before 34 weeks' gestation, or three 

or more consecutive miscarriages prior to 10 weeks of 

gestation. Laboratory criteria for APS include the 

detection of lupus anticoagulant (LA) in plasma, 

measured twice, 12 weeks apart; anticardiolipin 

antibody levels in plasma exceeding 40 GPL or MPL, 

or above the 99th percentile, measured twice, 12 

weeks apart; or anti-β2 glycoprotein-I antibody levels 

in plasma above the 99th percentile, also measured 

twice, 12 weeks apart. A diagnosis of APS requires 

meeting at least one clinical and one laboratory 

criterion (68). 

 
Table 2. Laboratory clinical criteria in APS syndrome 
1- Lupus anticoagulant (LA) measured in the plasma twice and 

12 weeks apart 

2- Anticardiolipin antibody in plasma >40GPL or MPL or > 
99th percentile, measured twice and 12 weeks apart 

3- Anti-β2 glycoprotein-I antibody in plasma >99th percentile 

measured twice and 12 weeks apart 

 

Antiphospholipid antibodies (aPL) interfere with 

phospholipids and phospholipid-binding proteins, 

such as beta-2 glycoprotein 1, protein C, and protein 

S, impairing the function of these homeostasis 

regulators and precipitating vascular issues and 

pregnancy complications (69). Moreover, aPLs 

activate endothelial cells, escalating the production of 

arachidonic acid metabolites, adhesion molecules, and 

cytokines, thereby enhancing the risk of 

thromboembolism (70). aPL antibodies also impede 

hormone production by trophoblasts, including hCG, 

and restrict the invasive capability of extracellular 

A70 Immunological Diagnostics for Infertility: Cellular, Molecular, and Genetic Comprehensive Review 
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villous trophoblasts into the maternal decidua (71). 

Activation of the complement cascade through the 

classical pathway by aPLs initiates neutrophil 

recruitment and the subsequent release of 

proinflammatory cytokines (72). 

Miscarriage is a frequent consequence of aPL presence 

(73-75). During pregnancy, tolerance to fetal 

alloantigens by the maternal immune system, 

facilitated by Treg cells, is essential for fetal survival. 

A reduction in Treg cells may lead to failed embryo 

implantation and increased production of 

proinflammatory cytokines (76). Compared to healthy 

women, those with aPL exhibit fewer Treg cells and 

more activated T- and pathogenic B-cells (78, 79). 

Additionally, lower levels of NK and NK T-cells in 

aPL-positive women contribute to inadequate 

trophoblast invasion and spiral artery remodeling, 

emphasizing the altered immune status in these 

patients (79). 

Significantly higher prevalence of autoantibodies 

against smooth muscle, phospholipids, and nuclear 

antigens have been observed in women with infertility 

compared to those with normal pregnancies (80). A 

notable rise in the prevalence of various 

autoantibodies, including antinuclear, lupus 

anticoagulant, anticardiolipin, and anti-double 

stranded DNA antibodies, is also evident in patients 

with unexplained infertility versus those with 

ovulatory infertility (20.5% versus 3.3%) (81). 

Furthermore, all tested aPLs (IgG, IgM, and IgA 

anticardiolipin, antiphosphatidyl ethanolamine, 

antiphosphatidyl inositol, antiphosphatidic acid, anti-

phosphatidyl glycerol, antiphosphatidyl choline, and 

antiphosphatidyl serine) are more frequently observed 

in women with implantation failure (82). Despite this, 

routine aPL testing in infertility patients lacks 

sufficient supporting data; further research into APS's 

pathophysiology is necessary to develop new 

therapeutic strategies targeting the immune system's 

inflammatory signaling pathways. 

 

3.2. Anti-Thyroid Antibody (ATA) 
Thyroid autoimmunity (TAI) represents the most 

prevalent autoimmune disorder among childbearing 

women, affecting between 5% and 20% of this 

demographic (83, 84). TAI is characterized by the 

presence of circulating antithyroid autoantibodies 

such as thyroid peroxidase antibodies (TPOAb), 

thyroglobulin antibodies (TGAb), and thyrotropin 

receptor antibodies (TRAb), which may or may not 

impair thyroid function (83, 84). 

"Previous studies have established that thyroid 

autoantibodies are prevalent among women of 

reproductive age, demonstrating particularly high 

rates in women with a history of subfertility (with 

prevalence estimates ranging between 10-31%) (85-

87) and recurrent miscarriage (with prevalence 

estimates between 17-33%) (88, 89). 

Thyroid hormone synthesis is critical for the 

progression and maintenance of pregnancy, with 

thyroid hormone transporters and receptors present in 

various reproductive tissues including the ovary, early 

embryo, endometrium, uterus, and placenta (90). 

Dysregulation of thyroid hormones impairs the 

stimulatory effects of gonadotropins on granulosa 

cells, reducing steroid hormone production and 

leading to menstrual irregularities and ovulatory 

dysfunctions (90, 91). Moreover, thyroid dysfunctions 

detrimentally affect folliculogenesis, fertilization 

rates, embryo quality, and trophoblast invasion, 

thereby decreasing the likelihood of a successful 

pregnancy. Consequently, maintaining euthyroidism 

is essential during pregnancy (90). 

Women with thyroid autoimmunity (TAI) often 

exhibit insufficient production of thyroid hormones 

due to antibody interference, potentially culminating 

in pregnancy loss if unmanaged (92, 93). Thyroid 

peroxidase antibodies (TPO-Ab) are associated with 

increased risks of miscarriage, placental abruption, 

and hypertension induced by pregnancy (94). 

Furthermore, thyrotropin receptor antibodies (TRAbs) 

can cross the placental barrier, adversely affecting 

thyroid function in both the mother and fetus (94). 

Additionally, thyroid-stimulating hormone (TSH) 

enhances the activation of natural killer (NK) cells, 

promoting their proliferation and cytotoxic activity 

(95, 96). Thyroid autoantibodies also disrupt the 

Research indicates that the proportion of peripheral 

NKT-like cells escalates in women with autoimmune 

thyroiditis (AIT), contributing to miscarriage and 

implantation failure (99, 100). Notably, serum levels 

of interleukin-2 (IL-2) and interleukin-17 (IL-17) are 

elevated in early pregnancy among patients with AIT 

compared to controls (101). Th1 cells, through IL-2 

and interferon-gamma (INF-γ) production, are crucial 

in mediating implantation failure and abortion. IL-17, 

a pro-inflammatory cytokine produced by Th17 cells, 

plays a significant role in the pathogenesis of abortion 

(32). 

Collective findings from various studies indicate: 

- Increased rates of miscarriage and poorer delivery 

outcomes are observed in the TPOAb-positive group 

compared to the TPOAb-negative group (102). 

- The co-presence of TPOAb and elevated TSH levels 

in early pregnancy correlates with a heightened risk of 

gestational diabetes (103). 

- TPOAb positivity is associated with placental 

abruption (104). 

- A correlation exists between TPOAb positivity and 

maternal anemia (105). 

- Associations between TPOAb and preterm delivery 

have shown more consistent findings (106). 

- The presence of thyroid autoantibodies significantly 

elevates the risk of miscarriage across various 

populations compared to women without these 

autoantibodies (107). 

 A71 Hamed Mohammadi and colleagues 
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Consequently, screening for thyroid autoimmunity is 

recommended as part of the diagnostic workup for 

women experiencing infertility or early miscarriage to 

facilitate timely evaluation, diagnosis, and potentially, 

initial treatment to enhance pregnancy outcomes. 

 

3.3 Anti-Nuclear Antibody (ANA)  
Antinuclear antibodies (ANA) target cytoplasmic and 

nuclear antigens present in all nucleated cells and 

comprise a broad group that recognizes various 

cellular components such as double-stranded DNA 

(ds- DNA), RNA molecules, mitochondrial antigens, 

and various proteins within the cytoplasm and nucleus, 

as well as their complexes (108-110). Elevated ANA 

titers serve as biomarkers for several autoimmune 

diseases, including systemic lupus erythematosus 

(SLE) and rheumatoid arthritis. There is also evidence 

linking high ANA levels to immunologically induced 

infertility (111). Significant differences in ANA serum 

positivity, titer, and pattern have been observed 

between women with and without recurrent pregnancy 

loss (RPL), with ANA levels being threefold higher in 

the RPL group compared to controls (112). 

"The involvement of antinuclear antibodies (ANA) in 

recurrent pregnancy loss (RPL) is a subject of ongoing 

debate, with numerous studies striving to elucidate 

their influence on this reproductive issue. Research 

indicates that ANAs negatively impact pregnancy and 

implantation rates while also potentially degrading 

oocyte quality and embryo development (113). 

Moreover, ANAs can initiate the activation of 

plasmacytoid dendritic cells via Toll-like receptor-9, 

which enhances the production of inflammatory 

cytokines such as interferon α. This cascade stimulates 

the humoral immune response and leads to further 

ANA production (114, 115). Additionally, evidence 

demonstrates that ANA-positive groups exhibit 

significantly lower rates of Miosis II oocytes, normal 

fertilization, and pregnancy and implantation rates, 

coupled with increased rates of abnormal fertilization 

and early miscarriage (116). The presence of anti-

dsDNA antibodies is linked to immunological 

inflammation in the placenta, adversely affecting 

pregnancy outcomes (117). High levels of ANAs are 

associated with detrimental effects on oocyte and 

embryo development, correlating with repeated 

implantation failure (RIF) and recurrent miscarriage 

(118). Given the established roles of ANAs in various 

infertility-related disorders, measuring ANA titers is 

advised. Continued research and trials are imperative 

to explore potential roles and immunotherapeutic 

strategies in affected individuals. 

 

3.4. Antisperm antibody (ASA) 

Antisperm antibodies (ASA) were identified in 

infertile males as early as 1954 by Rumke and Wilson 

(119). ASAs are immunoglobulins that target sperm 

antigens and are present in reproductive tract 

secretions and blood in both genders. Typically, 

mature sperm are shielded from immune recognition 

by the blood-testis barrier, which maintains tight 

intercellular junctions. However, damage to the testis, 

epididymis, or vas deferens, exposing sperm to the 

immune system, can prompt an autoimmune response 

against sperm. Conditions such as testicular carcinoma 

(120), testicular torsion (121), epididymal and 

bilateral orchitis (122), varicocele (123), seminal 

infections, sexually transmitted diseases (125), 

prostate inflammation (126), and seminal vesicle 

inflammation can elevate ASA levels. Similarly, 

structural disruptions in the male reproductive tract, 

vasectomy, or erectile dysfunction (128) are 

associated with higher ASA levels. Chronic bacterial 

infections, such as chronic prostatitis, increase the 

likelihood of ASA development threefold compared to 

controls (129, 130). A recent study also linked human 

papillomavirus (HPV) infection in men with an 

increased risk of ASA development (131). The reason 

for variability in ASA production among females, with 

some developing ASAs while others do not, remains 

elusive. Sperm cells introduced into the lower female 

reproductive tract are recognized as allogeneic 

antigens, triggering an inflammatory or allergic 

response leading to ASA production (133, 134). 

Despite some cases of idiopathic ASA presence (135), 

ASAs impair sperm capacitation, the acrosome 

reaction, sperm traversal through female reproductive 

tract secretions, gamete fusion, and early embryo 

development (136, 137). While ASAs do not affect 

sperm volume, viability, progressive motility, or 

morphology, they significantly reduce sperm 

liquefaction and motility (120)." 

Sperm agglutination serves as a crucial parameter in 

the Anti-Sperm Antibody (ASA) assay, as evidenced 

by reference 138. Although there is a weak correlation 

between sperm agglutination and the presence of 

ASA, factors other than sperm antibodies can also 

induce agglutination (139-141). The World Health 

Organization's 2010 laboratory manual for human 

semen analysis categorizes sperm agglutinates as 

indicative of ASA presence (139). Furthermore, the 

presence of ASA correlates significantly with 

reductions in sperm count, vitality, and motility (141, 

142), and studies suggest that asthenozoospermia may 

warrant ASA testing (143). 

ASA in semen predominantly comprises two classes 

of immunoglobulins: IgA and IgG (139). Clinically, 

IgA is more significant, though over 95% of 

individuals with IgA also possess IgG (reference 139). 

The detection of ASA on spermatozoa can be 

accomplished through two direct assays: the Mixed 

Antiglobulin Reaction (MAR) test, using fresh semen, 

and the Immunobead (IB) test, employing washed 

spermatozoa (139). These tests involve incubating the 

sample with latex beads coated with anti-human 

antibodies (139). If ASA are present, these antibodies 
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bind to the sperm surface antibodies, and under 

microscopic observation, motile spermatozoa coated 

with beads are identified, with the percentages of 

coated motile sperm counted (139). Insufficient counts 

of motile spermatozoa (fewer than 100) necessitate the 

use of indirect assays (139). 

Direct assays yield information confirming the 

presence and type of immunoglobulins (IgG or IgA) 

and their specific localization on the sperm's head, 

midsection, tail, or entire length (139). Conversely, 

indirect assays assess sperm-specific 

immunoglobulins in sperm-free fluids such as heat-

inactivated serum, seminal plasma, and dissolved 

cervical mucus, which are incubated with ASA-free 

donor sperm previously washed from the original 

seminal fluid, considering the interaction time 

between sperm and potential antibodies (139). 

Indirect testing is advisable in cases of 

oligozoospermia or stenospermia, either alone or in 

combination, and in scenarios of obstructive 

azoospermia or when a sample is unavailable for 

testing, allowing for semen to be frozen and stored 

until analysis (139). Despite thorough research into 

immunological infertility, substantial ambiguity 

remains regarding the application of ASA testing and 

treatment strategies for men with ASA, underscoring 

the need for further investigation. 

 

4. Molecular and Genetic Markers for 

Endometrial Analysis 

4.1. Endometrial Immune Profile Test (EIP): 

The Endometrial Immune Profile (EIP) test, which 

utilizes reverse transcription-quantitative polymerase 

chain reaction (RT-qPCR), quantitatively assesses 

gene expressions related to immune modulation in the 

endometrium. This includes the evaluation of 

interleukin-15 (IL-15), interleukin-18 (IL-18), tumor 

necrosis factor-like weak inducer of apoptosis 

(TWEAK), fibroblast growth factor-inducible 

molecule 14 (Fn14), and CD56 (144). 

It is well-documented that a balanced immune cell 

profile, particularly the equilibrium between TH1 and 

TH2 cells, along with the activity and cytotoxicity 

levels of uNK cells, are critical for fostering feto-

maternal tolerance. Any imbalance can precipitate 

reproductive issues, such as compromised 

implantation processes. 

The interaction between TWEAK and its receptor, 

Fn14, mitigates local cytotoxicity and regulates uNK 

cell functions, influencing various physiological and 

pathological outcomes like embryonic development, 

angiogenesis, inflammation, and apoptosis (145-148). 

Furthermore, TWEAK modulates the expression of 

other cytokines such as IL-18 and IL-15, thereby 

playing a crucial role in controlling uNK cell 

cytotoxicity and promoting maternal tolerance 

towards the fetus. 

Research indicates that IL-18 is actively expressed in 

the endometrium during the implantation window 

(WOI) and is instrumental in managing trophoblast 

invasion, migration, and uNK cell activity, as well as 

promoting angiogenesis and placental vascularization 

essential for maternal-fetal nutrient and oxygen 

exchange (149). 

Excessive or imbalanced IL-18 expression has been 

linked to reproductive disorders like preterm birth, 

preeclampsia, and fetal growth restriction (150). IL-18 

also influences the TH1/TH2 balance; it can stimulate 

TH1 immune responses, triggering cytotoxic T cell 

activation and pro-inflammatory cytokine production 

(e.g., TNF and INF) (151). Conversely, IL-18 can 

exhibit TH2-like activity, enhancing eosinophil 

responses and IL-5 and IL-13 production, thus 

supporting TH2 responses in synergy with IL-4 (152). 

IL-15, another crucial immune system cytokine, 

supports the survival, proliferation, and maturation of 

immune cells, including uNK cells (153). 

In the EIP test, the IL-18/TWEAK mRNA ratio serves 

as a biomarker for angiogenesis and the TH1/TH2 

balance. High IL-18 expression, which typically 

benefits the immune response, can become deleterious 

by promoting local cytotoxicity if not balanced by 

TWEAK expression (146). Elevated TWEAK levels 

can counteract excessive IL-18 expression, preventing 

the transformation of uNK cells into cytotoxic entities 

(146). 

IL-15/Fn-14 mRNA serves as a biomarker to assess 

the activation and maturation of uterine natural killer 

(uNK) cells by evaluating the presence of uNK-

CD56+ cells. The activation and maturation status of 

NK cells during pregnancy is critical. As uterine NK 

cells are typically immature, they undergo a process of 

maturation, where IL-15 plays a pivotal role in their 

recruitment and development. 

In a study examining the endometrial immunity of 104 

patients with recurrent pregnancy loss (RPL), 75% 

exhibited signs of endometrial immune dysregulation. 

Among these, 31% displayed an underactive uterine 

immune profile, 50% an overactive profile, and 19% a 

mixed pattern. Notably, uterine immune profiling was 

significantly correlated with higher live birth rates 

(LBR) when dysregulation was identified (154). 

Another investigation on the endometrial immunity of 

394 patients with recurrent implantation failure (RIF) 

identified overactivation in 56.6% of cases and low 

activation in 25%. The LBR among these 

dysregulated/treated patients at their subsequent 

embryo transfer was 39.8% (155). These findings 

underscore the need for further research to verify the 

efficacy of these assessments. 

 

4.2. Endometrial Decidualization Score (EDS) 

Decidualization involves the extensive proliferation, 

secretion, and regression of the endometrium's inner 

lining in preparation for pregnancy. This process 

 A7373  Hamed Mohammadi and colleagues 
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transforms human endometrial stromal cells into 

decidual cells, creating a tissue receptive to embryo 

implantation (156). Decidualization primarily relies 

on the action of progesterone on estradiol-primed 

progesterone receptors in endometrial stromal cells 

(157). 

A key progesterone signaling mediator, Forkhead box 

O1 (FOXO1), induces senescence in a subset of 

decidualized stromal cells, crucial for tissue 

remodeling essential for embryo implantation (158). 

Additionally, decidualization involves increased 

expression of homeostatic tissue and cellular factors 

(159), as well as glucose transport molecules like 

Glut1 and Glut3 in the human endometrium, peaking 

during the mid-luteal phase to support embryo 

implantation and growth (160). 

Concomitant with these metabolic enhancements, 

there is a notable increase in uterine natural killer (NK) 

cells in the endometrium during this phase (161). 

These uNK cells, secreting growth-promoting, 

angiogenic, chemotactic, and immunoregulatory 

factors, play significant roles in angiogenesis, 

placental growth, and trophoblast invasion regulation 

(162, 163). Moreover, interleukin 15 levels in the 

endometrium, which bolster the proliferation and 

survival of NK cells, also rise during the luteal phase 

(164, 165). 

Molecular diagnostics utilizing targeted RNA 

sequencing has been employed to detect endometrial 

gene expressions crucial for progesterone signaling 

and decidualization (FOXO1) (166, 167), tissue and 

cellular homeostasis (SGK1, SCNN1A, and SLC2A1) 

(168-170), and immunoregulatory and tissue 

remodeling factors (IL-15 and GZMB) (158). This 

gene expression profile evaluation is referred to as the 

decidualization score. 

Research indicates that among women with 

reproductive failures, 76% had EDS scores ≤ 4, and 

19% had scores of 0, whereas 89% and 11% of fertile 

controls had EDS scores ≥ 5 and 4, respectively (171). 

However, additional studies are necessary to confirm 

the utility and effectiveness of this score. 

 

4.3. Human Herpesvirus 6A Test (HHV6A) 

Human Herpesvirus 6A (HHV-6A) is categorized 

within the beta-herpesviruses and is recognized as part 

of the Roseolovirus genus (172-175). It exhibits a 

broad cellular tropism, infecting numerous cell types 

across various tissues, including: 1) diverse immune 

cells—such as CD4+ T cells, CD8+ T cells, and NK 

cells; 2) various nervous system cells—such as 

astrocytes, microglial cells, oligodendrocytes, and 

neuronal cells; 3) and cells from other tissues 

including liver cells, human fibroblasts, epithelial 

cells, and endothelial cells (174-176). Moreover, 

HHV-6A is capable of infecting different cells within 

the female reproductive tract, being detected in the 

vaginal canal, uterus, and cervix (177, 178, 179). The 

viral infection of immune cells leads to an increased 

production of pro-inflammatory cytokines including 

IL-1β, TNFα, IFN-α, IFN-γ, and IL-6, while 

concurrently reducing the levels of the anti-

inflammatory cytokine IL-10 (180-186). Furthermore, 

infection by HHV-6A enhances the toxicity of NK 

cells in non-pregnant women, particularly when 

endometrial epithelial cells are involved, resulting in 

elevated pro-inflammatory cytokine levels that may 

inhibit implantation (9, 187). This suggests that 

endometrial NK cell contamination plays a role in the 

pathogenesis of primary infertility. Conversely, during 

pregnancy, NK cells exhibit reduced susceptibility to 

foreign antigens due to interactions with HLA-G and 

HLA-E on cytotrophoblasts, which inhibit attacks 
against paternal antigens (188). Theoretically, HHV-

6A infection could disrupt this protective interaction, 

leading to impaired implantation and contributing to 

primary unexplained infertility and preeclampsia (PE). 

Research indicates that Human herpesvirus 6A 

deoxyribonucleic acid was found in 43% of 

endometrial samples from women with primary 

unexplained subfertility, in contrast to 0% in fertile 

controls (177). Additionally, cases of PE show a 

higher prevalence of inherited chromosomally 

integrated HHV-6A (iciHHV-6A) and possibly 

acquired infections, suggesting susceptibility to PE 

(189, 190). The evidence thus far is compelling and 

merits further investigation. 

 

4.4. B Cell CLL/Lymphoma 6 Test (BCL6) 

B-cell lymphoma 6 (BCL6), a crucial proto-oncogene, 

plays a predominant role in regulating humoral 

immunity and lymphoma survival (191, 192) (Figure 

2). This transcriptional repressor is involved in cellular 

differentiation, cell cycle control, and apoptosis 

inhibition (193). Elevated BCL6 expression correlates 

with unexplained infertility, endometriosis-associated 

infertility, and common pregnancy diseases such as 

preeclampsia (PE) (194-198). Notably, BCL6 is 

frequently altered in pre-eclamptic placentas as shown 

through systematic meta-analysis and expression 

network analysis (199, 200). Its overexpression 

stimulates ARNT2 (aryl hydrocarbon receptor nuclear 

translocator 2) production, which partners with 

hypoxia-inducible factor 1a (HIF-1a) to influence 

trophoblast invasion and contribute to PE 

pathogenesis (198, 201-203). A study revealed that 

2977 genes, enriched with metabolism-related 

pathways and transporter functions, were 

differentially expressed in severe early-onset PE (EO-

PE), while 375 genes associated with immune 

pathways were more prevalent in severe late-onset PE 

(LO-PE), with BCL6 being upregulated in both 

conditions (196). Aberrant BCL6 expression exhibits 

high sensitivity and specificity for diagnosing all 

stages of endometriosis, indicating its potential as a 

biomarker (204). The prevalence of elevated 
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endometrial BCL6 expression in women with 

unexplained infertility (UI) is reported at 75.3% and 

80% (194, 195). Although some progress has been 

made, further research is necessary to fully elucidate 

the molecular mechanisms through which BCL6 

exerts its diverse functions in the placenta and 

endometrium. 

 
Figure-2. Different methods of identifying immune system 

disorders in infertility 

 

Conclusion 

The establishment of pregnancy and its maintenance, 

involve complex states, tightly regulated by intricate 

relationships among the different cell subsets of the 

immune system. Endometrial immune status has been 

a neglected factor in reproductive medicine and 

management. However, the uterine immune profiling 

represents a clinical innovation which can 

significantly increase the appropriate assisted 

reproductive technology (ART) through 

personalization. Currently, infertility is a growing 

problem, affecting 8-12% of couples of reproductive 

age worldwide. Therefore, it is clear that there is a 

great need in this field for progress in the development 

of diagnostic tests that provide the possibility of 

assessing the risk of these infertility, such as RPL and 

RIF, etc. 
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