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Article History

Pharmacogenetics plays a crucial role in personalized treatment. This field investigates
how genetic variations influence drug responses, focusing on how genes affect the body's
reaction to medications. This study explores the impact of genetic polymorphisms on the
metabolism of efavirenz, a drug used in the treatment of HIV. The objective is to compare
the effects of CYP450 polymorphisms on the metabolism of efavirenz using a network
meta-analysis approach. This research, conducted following PRISMA guidelines,
examines the pharmacogenetic effects on the efficacy and prevention of adverse drug
reactions (ADRSs) of efavirenz. The search strategy included a review of observational
and interventional studies without language or publication date restrictions. Inclusion
criteria involved studies assessing drug concentration, AUC, ADRs, and genotype
comparisons. Two independent researchers selected studies and managed data. Data
analysis was performed using STATA software, employing a combination of methods to
assess heterogeneity and the overall impact of genetic polymorphisms. For continuous
and binary outcomes, SMDs and ORs or HRs were used, respectively. Egger’s test was
conducted to identify publication bias. In this systematic review and meta-analysis, a
comprehensive assessment of the relationship between genetic variants and efavirenz
metabolism was conducted. Out of 19,861 records, 96 studies were reviewed. These
studies, from various countries, had sample sizes ranging from 20 to 6,045 participants.
The results indicated that specific variants in genes such as CYP2B6 were significantly
associated with changes in plasma efavirenz concentrations. These findings underscore
the importance of genetic influences on drug metabolism in the treatment of HIV and the
management of its side effects. This extensive systematic review and network meta-
analysis evaluated the role of various genes in the metabolism of efavirenz and
rivaroxaban. The analyses revealed that specific polymorphisms in the CYP2B6 gene
significantly affect the plasma concentration of efavirenz, which is crucial for improving
HIV treatment and reducing drug-related side effects. These findings highlight the
significance of pharmacogenomic research and the consideration of genetic diversity in
therapeutic management.
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Introduction

Efavirenz, a cornerstone antiretroviral drug used in the
treatment of HIV-1 infection, is metabolized
predominantly by the cytochrome P450 (CYP450)
enzyme system. Genetic polymorphisms in CYP450
enzymes, particularly CYP2B6, significantly
influence efavirenz pharmacokinetics, affecting both
drug efficacy and the occurrence of adverse drug
reactions (ADRs) (1-3). Understanding these genetic
variations is crucial for optimizing efavirenz therapy,
enhancing treatment outcomes, and minimizing side
effects through personalized medicine approaches (4-
6).

Pharmacogenetics, the study of how genetic variations
influence drug response, has emerged as a pivotal field
in precision medicine. By identifying genetic markers
associated with drug metabolism, clinicians can tailor
treatments to individual genetic profiles, potentially
improving therapeutic efficacy and reducing the risk
of ADRs (7-9). Efavirenz serves as an exemplary case
for the application of pharmacogenetics due to its
narrow therapeutic index and the substantial
variability in its metabolism among individuals (3, 10-
12).

The objective of this study was to conduct a
comprehensive network meta-analysis to evaluate the
impact of CYP450 polymorphisms on the metabolism
of efavirenz. We aimed to determine whether a
pharmacogenetic approach could improve the efficacy
and prevent ADRs associated with efavirenz. By
systematically reviewing and analyzing data from
various studies, we sought to elucidate the relationship
between specific genetic variants and efavirenz
pharmacokinetics, providing insights that could
inform clinical decision-making and personalized
treatment strategies.

Methods

Study Question

The study aimed to answer the question: Is the
pharmacogenetic approach effective in improving the
efficacy and preventing adverse drug reactions
(ADRs) of efavirenz?

Search Strategy

All observational and interventional studies, including
cross-sectional, case-control, clinical trials, and cohort
studies, were searched in PubMed, Web of Science,
and Scopus. The search strategy, outlined in
supplementary Table 1, focused on keywords related
to ‘“efavirenz,” "genetics,” "pharmacogenomics,"
"pharmacogenetics,” and "personalized medicine." No
restrictions were applied regarding language and
publication date, and translations were arranged for
non-English and non-Persian documents if necessary.
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Two independent researchers conducted the search to
evaluate the impact of the pharmacogenetic approach
on preventing ADRs associated with efavirenz.

Inclusion Criteria

Studies were included if they: Examined the
concentration of efavirenz, the area under the time-
concentration curve (AUC), and ADRs as outcomes,
compared different genotypes, had study designs,
including case-control, cohort, clinical trial, and cross-
sectional, included human participants without any
restrictions on language and publication date, and had
no age restrictions for study participants. Non-relevant
publications or those not meeting the criteria were
excluded, as well as duplicate articles.

Study Selection

Two independent researchers conducted a three-step
data refinement process, including title review,
abstract review, and full-text analysis, to select
relevant studies according to the inclusion criteria.
Discrepancies were resolved through consultation
with a third expert.

Information Management

The information from the scientific documents
identified was managed using Endnote software for
easy storage. Relevant data were extracted and entered
into Excel sheets, including reference details, study
type, sample size, exposure, outcome, age, and gender
distribution of participants. Two independent
researchers participated in this process, and any
discrepancies were resolved through consultation with
a third expert.

Data Analysis

Statistical analysis was performed using STATA
version 14. Statistical significance was considered at a
p-value of < 0.05. Various methods were employed to
evaluate heterogeneity and the overall impact of
genetic polymorphisms on drug metabolism and
associated ADRs. For continuous outcomes, such as
plasma concentration levels, standardized mean
differences (SMDs) with 95% confidence intervals
(Cls) were calculated. For binary outcomes, such as
the occurrence of ADRs, odds ratios (ORs) and hazard
ratios (HRs) were used.

Heterogeneity was assessed using the 12 statistic and
corresponding  p-values to  determine  the
appropriateness of data pooling across studies. A
fixed-effects model was used when heterogeneity was
low (12 <50% and p-value > 0.10), indicating sufficient
similarity among studies to justify combining results.
Conversely, a random-effects model was applied
when significant heterogeneity was detected (I> > 50%
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or p-value < 0.10), acknowledging that differences in
findings could stem from variations in study
populations, methodologies, or other factors.
Additionally, Egger's test was conducted to assess the
presence of publication bias in the studies included in
the meta-analysis. This test helped identify any
skewness in the data that might result from a tendency
to publish certain types of studies. Including this bias
assessment ensured the robustness and reliability of
our meta-analytical findings.

Using these statistical methods and heterogeneity
assessments provided a comprehensive understanding
of the data, enabling us to draw informed conclusions
about the impact of genetic polymorphisms on drug
metabolism and the likelihood of experiencing ADRs.
This rigorous approach was crucial in ensuring the
accuracy and scientific integrity of our study results.

Results

Systematic Review

A total of 19,861 records were identified based on our
search strategy. After removing duplicate studies and
evaluating them based on titles, abstracts, and full
texts, 76 studies were included in our analysis to assess
the correlation between genetic variants and adverse
drug reactions (ADRs) of efavirenz (8, 13-86). Figure
1 shows the PRISMA flow diagram of the systematic
search.

Study Characteristics

In this systematic review, we analyzed a wide range of
studies from various countries to evaluate the effects
of CYP2B6 on the metabolism of efavirenz. A total of
76 studies were included in this review, encompassing
clinical trials, cohort studies, case-control studies,
retrospective studies, and cross-sectional studies.
These studies were conducted in various countries,
with sample sizes ranging from 20 participants to 6045
participants. The studies were conducted in diverse
geographical regions, including Ethiopia, Serbia, the
United Kingdom, Brazil, Ghana, South Korea,
Thailand, Cameroon, Zambia, Germany, Chile, the
Netherlands, the United States, Italy, Japan,
Switzerland, South Africa, Spain, China, Hungary,
Botswana, Papua New Guinea, Qatar, Kenya,
Rwanda, Tanzania, and India. These findings reflect
extensive global research efforts aimed at
understanding the impact of CYP2B6 on efavirenz
metabolism, underscoring the significance of this
research area in the context of HIV treatment and
pharmacogenomics.  Table 1  presents the
characteristics of included studies.

Impact of Variants on Efavirenz Metabolism

In our systematic review of the effects of genetic
polymorphisms on efavirenz concentrations, we
examined a total of 64 variants across different genes.
Among these, the ABCA1 gene was evaluated for the
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€.4760A>G SNP. The ABCBL1 gene was analyzed for
the following SNPs: ¢.1236C>T, c¢.193A>G,
C.2677G>T/A, c.4046A>G, ¢.3435C>T, and
€.4036A>G. The ¢.-24C>T SNP in the ABCC2 gene
was reviewed, and the ¢.540C>T variant in the CAR
gene was analyzed. Variants in the CYP1A2 gene,
including c.-163C>A, ¢.-2159G>A, and c.-739T>G,
were also included.

The MDRL1 gene was reviewed for the ¢.2677G>T
SNP, while the NR1I2 and NR113 genes were studied
for ¢.7635A>G, ¢.1089T>C, and ¢.8784T>C variants,
respectively. The PXR gene was analyzed for the
€.63396C>T SNP, and the SLCO1B1 gene was
examined for ¢.388A>G and ¢.521T>C. Variants in
SULTI1AL (c.638G>A) and UGT2B7 (c.-327G>A,
c.735A>G, ¢.802T>C, ¢.-161C>T, ¢.211G>T) were
also assessed.

In this pharmacogenetic meta-analysis of efavirenz,
we investigated the impact of various polymorphisms
on the metabolism rate of efavirenz and plasma
concentration changes. Our analysis revealed several
significant findings, elucidating the role of specific
genetic variants in efavirenz metabolism.

Among the genes studied, ABCB1 showed multiple
significant associations. The ¢.1236C>T SNP was
associated with increased plasma efavirenz
concentrations (SMD 1.38; 95% CI 1.10-1.76),
whereas ¢.4046A>G was linked to decreased plasma
efavirenz levels (SMD -2.03; 95% CI -1.76 to -2.42).
Similarly, the ¢.4036A>G polymorphism in ABCB1
was also associated with reduced plasma efavirenz
concentrations (SMD -0.82; 95% CI -0.68 to -0.97).
These findings indicate that specific genetic changes
in the ABCB1 gene significantly impact efavirenz
metabolism.

CYP2B6 also showed notable significant associations.
Some of the SNPs analyzed were linked to increased
plasma efavirenz levels. For instance, the ¢.516G>T
variant had a substantial effect size (SMD 2.45; 95%
Cl 2.05 to 2.86), indicating a strong influence on
efavirenz metabolism. Conversely, ¢.15582C>T and
€.18492C>T were associated with decreased plasma
efavirenz concentrations, highlighting the importance
of CYP2B6 variations in efavirenz metabolism.
Genetic variations in UGT2B7, such as ¢.735A>G and
€.802T>C, were linked to reduced plasma efavirenz
levels (SMD -1.22, -0.92), indicating their significant
role in regulating efavirenz metabolism. Other genes,
such as CYP2A6 and CAR, also showed significant
associations, suggesting their influence on efavirenz
metabolism. Conversely, several SNPs in genes like
ABCA1, CYP1A2, and SLCO1B1 did not show
significant  effects on efavirenz  metabolism,
underscoring the specificity of certain polymorphisms
in this process. Table 2 demonstrates the results of
meta-analysis.
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Findings from Network Meta-Analysis on
Polymorphisms Associated with Poor Metabolism

As shown in Figure 2, the ¢.516G>T polymorphism in
the CYP2B6 gene significantly increases efavirenz
concentrations more than the ¢.21563C>T, ¢.785A>G,
and ¢.983T>C polymorphisms in the same gene.
Additionally, the results indicated that the ¢.64C>T
polymorphism in the CYP2B6 gene is more effective
in increasing efavirenz concentrations compared to the
€.785A>G and ¢.983T>C polymorphisms in the same
gene.

Indirect Effects Results Using Network Map
The indirect effects were examined using a network
map, as illustrated in Figure 3.

Rank Analysis

To address the question of which variants should be
prioritized for limited analysis, a rank analysis was
conducted. The results are shown in the rankogram in
Figure 4.

Network meta-analysis findings on polymorphisms
related to rapid metabolism

As depicted in Figure 5, the analysis of ABCB1
(c.4046A>G) better predicts higher efavirenz doses
compared to ABCB1 (c.4036A>G) and UGT2B7
(c.802T>C). Subsequently, a network map related to
the rapid metabolism of efavirenz was generated. The
results of this analysis are shown in Figure 6.

Rank Analysis for Rapid Metabolism
To determine which variants would be the most
predictive if a limited number needed to be analyzed,
a rank analysis was performed. The results are
displayed in the rankogram in Figure 7.

Discussion

The findings of this study underscore the significant
impact of CYP450 polymorphisms on the metabolism
of efavirenz, with particular emphasis on the CYP2B6
gene. Our network meta-analysis, which included 96
studies and a diverse sample size ranging from 20 to
6,045 participants across various countries, provides a
comprehensive evaluation of the pharmacogenetic
landscape influencing efavirenz metabolism.

The role of CYP2B6 polymorphisms, particularly the
c.516G>T wvariant, in altering efavirenz plasma
concentrations has been corroborated by previous
studies. Rotger et al. (2005) and Haas et al. (2004)
demonstrated that individuals with the ¢.516G>T
polymorphism exhibit significantly higher efavirenz
plasma levels, which can lead to increased efficacy but
also a higher risk of adverse drug reactions (ADRS)
(87, 88). Our findings align with these results, further
validating the critical role of this SNP in efavirenz
metabolism.

In addition to CYP2B6, our study highlights
significant  associations of = ABCBl1  gene
polymorphisms with efavirenz plasma levels. The
€.1236C>T and c.4046A>G variants were found to
significantly affect efavirenz concentrations, with the
former increasing and the latter decreasing the plasma
levels. This is consistent with the work of Mukonzo et
al. (2009), who reported similar effects of ABCB1
polymorphisms on efavirenz pharmacokinetics (89).
Our meta-analysis extends these findings by providing
a more robust, statistically significant evaluation
through the inclusion of a larger and more diverse
sample size.

Contrary to some earlier studies (21, 24, 28, 48, 90),
our analysis did not find significant effects of certain
polymorphisms, such as those in the ABCAl and
SLCO1B1 genes, on efavirenz metabolism. This
discrepancy could be attributed to differences in study
populations, methodologies, and sample sizes. For
example, Kwara et al. (2009) suggested a potential
role of SLCO1B1 polymorphisms in efavirenz
metabolism, but our broader analysis indicates that
these effects may not be as substantial or consistent
across different populations (91).

The results of our network meta-analysis have
important implications for personalized medicine in
the treatment of HIV. Identifying patients with
specific CYP2B6 and ABCB1 polymorphisms can
help clinicians predict which individuals are likely to
experience higher efavirenz plasma levels and,
consequently, a greater risk of ADRs. This
information can be used to tailor efavirenz dosing
more precisely, optimizing therapeutic outcomes
while minimizing side effects (40, 92-95).

Moreover, the rank analysis and network maps
generated in this study provide a framework for
prioritizing genetic variants in clinical settings. By
focusing on the most impactful polymorphisms, such
as CYP2B6 ¢.516G>T and ABCB1 c.1236C>T,
healthcare providers can implement more efficient and
cost-effective pharmacogenetic testing protocols. This
approach not only enhances patient care but also aligns
with the principles of precision medicine, ensuring
that treatments are tailored to individual genetic
profiles (1, 2, 4, 7-9, 96).

While our study provides robust evidence on the
impact of CYP450 polymorphisms on efavirenz
metabolism,  several  limitations  must  be
acknowledged. First, the heterogeneity in study
designs, populations, and methodologies could
influence the generalizability of our findings.
Although we employed rigorous statistical methods to
assess and account for heterogeneity, further research
is needed to validate these results in more
homogeneous and controlled settings.

Additionally, our analysis primarily focused on
genetic polymorphisms, but other factors such as drug-
drug interactions, environmental influences, and
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patient adherence to medication also play crucial roles
in efavirenz pharmacokinetics. Future studies should
aim to integrate these variables to provide a more
comprehensive  understanding ~ of  efavirenz
metabolism.

Lastly, the rapid advancements in genomic
technologies and the discovery of new genetic variants
necessitate continuous updates to pharmacogenetic
knowledge. Ongoing research and updates to
databases will be essential to keep pace with these
developments and to refine personalized treatment
strategies for HIV and other conditions.

Conclusion

In conclusion, our network meta-analysis reinforces
the pivotal role of CYP450 polymorphisms,
particularly in the CYP2B6 and ABCB1 genes, in
influencing efavirenz metabolism. These findings
highlight ~ the importance  of incorporating
pharmacogenetic testing into clinical practice to
enhance the efficacy and safety of HIV treatment. By
leveraging genetic insights, healthcare providers can
move towards more personalized and precise
therapeutic approaches, ultimately improving patient
outcomes and reducing the burden of ADRs. Future
research should continue to explore the complex
interplay of genetic, environmental, and behavioral
factors in drug metabolism, ensuring that
pharmacogenomics remains at the forefront of
personalized medicine.
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Table 1. Characteristics of included studies
row Author name Year Study design Provenance Sample
size

1 Abiy Habtewold 2011 Clinical Trial Ethiopia 163

2 Adeniyi 2014 Cohort Serbia 93
Olagunju

3 Alan Winston 2014 Randomized United 31

Controlled Trial Kingdom

4 Antonio V.C. 2018 Case-Control Brazil 176
Coelho

5 Antonio V.C. 2013 Retrospective Brazil 187
Coelho

6 Awewura Kwara 2008 Cohort Ghana 65
7 Awewura Kwara 2009 Cohort Ghana 94
8 Byungwook Kim 2021 Cohort Korea 1012
9 C. Sukasem 2013 Cohort Thailand 149
10 C. Sukasem 2014 Cohort Thailand 100
11 Carine Nguefeu 2019 Cohort Cameroon 122
Nkenfou
12 Carolin  Bolton 2017 Prospective Zambia v
Moore
13 Chonlaphat 2012 Prospective Thailand 52
Sukasem
14 Christopher 2007 Cohort Zimbabwe 74
Nyakutira
15 Christoph Wyen 2011 Cohort Germany 373
16 Christoph Wyen 2008 Cohort Germany 186
17 Claudia P. Cortes 2012 Cohort Chile 219
18 Daniel F. Carr 2010 Cohort Chile 219
19 Daniela Poblete 2021 Retrospective Chile 67
20 David Burger 2005 Cohort Netherlands 225
21 David W. Haas 2004 Cohort USA 152
22 David W. Haas 2005 Retrospective us, Italy 340
23 David W. Haas 2009 Cohort US  (African 34
Americans)
24 David W. Haas 2014 Prospective us 84
25 David W. Haas 2004 Cohort USA 152
26 David W. Haas 2009 Cohort US  (African 34
Americans)
27 David W. Haas 2005 Retrospective us, Italy 340
28 David W. Haas 2009 Cohort US  (African 34
Americans)
29 Eliford Ngaimisi 2013 Prospective Ethiopia 285
30 Tanzania 209
31 Emily R. 2012 Cohort us 856
Holzinger
32 Emile Bienvenu 2013 Cohort Rwanda 76
33 Fred S. Sarfo 2013 Retrospective Ghana 800
Cohort
34 G Yimer 2011 Prospective Cohort Ethiopia 285
35 Hiroyuki 2007 Cohort Japan 456
Gatanaga
36 Jacques Fellay 2002 Cohort Switzerland 123
37 Jenna Johnston 2019 Cohort South Africa 135
38 Jose J. G. Marin 2020 Cohort Spain 32
39 Julia di lulio 2009 Cohort Switzerland 169
40 Jun Chen 2010 Cohort China 120
41 Katalin Mango 2022 Cohort Hungary 119
42 Katalin Mango 2022 Cohort Hungary 119
43 Kiyoto Tsuchiya 2004 Cohort Japan 23
44 Kin Wang To 2009 Cohort China 79
45 Laura Dickinson 2015 Cohort UK 606
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Table 2. Findings of the meta-analysis of the impact of genetic variants on
plasma concentration of efavirenz
47 M. Rotger 2007 Cohort Switzerland 169 Effect on the Plasma
pace of concentration
48 | M.Rotger 2007 | Cohort Switzerland 169 Gene SNP efavirenz (standardized
metabolism d_ﬁmean
49 Manojranjenni 2018 | Cohort UK 30 ifference)
ABCAL C.4T60ASG not significant 0.25; 95% C|
Chetty : 9 -0.9210 1.42
50 | Maria  Alice | 2016 | Cohort Brazil 185 Associated
W“T higher 1.38; 95% CI
Freitas Queiroz ABCB1 c. 1236C>T plasma DY
efavirenz 1.10-1.76
51 Marelize Swart 2013 Cohort South Africa 464 concentrations
o - — Associated
52 Margalida 2005 Cohort Switzerlan 167 i
8 with lower -2.03: 95% CI
Rotger ABCB1 c. 4046A>G pla§ma 17610 -2.42
efavirenz . i
53 Melissa A. 2010 Prospective us 91 concentrations
Frasco Associated
with lower -0.82: 95% CI
54 Monica Gandhi 2012 | Cohort USA 111 ABCBL €.4036A>G plasma _ .
. 0.68 to -0.97
efavirenz
55 Monkgomotsi J 2021 Retrospective Botswana 227 concentrations 015 95% Gl
T .12; 95%
Maseng Case-Control ABCB1 c. 193A>G not significant 1050 1.29
- c. 2677 . -0.05; 95% CI
56 Monpat 2021 Cohort Thailand 149 ABCB1 G>TIA not significant 13810 1.28
. 0/
Chamnanphon ABCBL ¢.3435 C>T not significant 018 9%
57 Musa Otieno 2022 Cross-sectional Kenya 312 S otor
ABCC2 c.-24C>T not significant 0.03; 95% CI
Ngayo -1.21t01.27
Associated
58 Natdlia  Bordin 2021 Cohort Papua New 156 with lower 125 95% ClI
Andriguetti Guinea CAR c. 540C>T pla§ma -_1. OS’tO _f46
efavirenz . .
59 Philippe R. 2012 Cohort Rwanda 97 concentrations
T -0.09; 95% CI
Mutwa CYP1A2 c.-163C>A not significant 13610118
60 Puthen Veettil | 2022 | Cohort? Qatar 6,045 B inifi 0.31; 95% ClI
e CYP1A2 . -2159G>A not significant 1020 1.64
ithes| - - 0
CYP1A2 c.-739T>G not significant 01'0225’ fsfz(il
61 Rong Chen 2020 Cohort China 184 (;14 9(5)0/‘ 7
CYP1A2 c.—163C>A not significant 1 1§t 1“237
62 Sabina Mugusi 2018 Cohort Tanzania 458 . 11910 1.
Associated
- with higher . OE0
63 Sahapat 2020 Cohort Thailand 149 CYP2A6 c. 1093G>A plasma lC.’Oggé t9[;5 {UZC5|
Barusrux efavirenz ) )
64 Salvad 2010 Cohort Spail 32 concentrations
alvador ohort pain . _0.11; 95% CI
Cabrera CYP2A6 c. 1436G>T not significant 14410122
T 0.29; 95% CI
Figueroa CYP2A6 €.1093G>A not significant 20.99t0 1.57
65 Sandra G. Heil 2012 Cohort Netherlands 54 CYP2A6 C.-48T>G not significant 0.08; 95% CI
-1.16t0 1.32
66 Sonia Rodriguez- | 2005 | Cohort Spain 104 CYP2A6 c. 1836G>T not significant -01-1551? ?05"1/02?
Novoa Associated
- with higher . OF0,
67 Sumonmal 2012 Cohort Thailand 124 CYP2B6 ¢. 21563C>T plasma l(jlgzé ?;5 1/nZCBI
Uttayamakul efavirenz : i
concentrations
68 Tanuja N [ 2015 Prospective South Africa 54 Associated
Gengiah with higher . 050
e CYP2B6 c.516G>T plasma 22'455; tgos 2/"8%'
69 Tailah Bernardo 2018 Retrospective Brazil 225 efavirenz ) .
de Almeid concentrations
€ Almeica Associated
70 | TAUSE E. | 2017 | Cohort Brazil 89 with higher - 959
. CYP2B6 c. 64C>T plasma 11'5372’ tgs f’ SCZI
MULLER efavirenz 92 to L
71 Tracy R. Glass 2012 Prospective Switzerland 37 Concemra“ons
Associated
- with higher . 9E0,
72 Tristan Lindfelt 2010 Cohort USA 20 CYP2B6 C. 785 ASG plasma 0.42; 95% CI
efavirenz 0.19100.65
73 Vanessa S 2016 Cohort Brazil 34 concentrations
Mattevi Associated
with higher .
74 Wondmagegn 2022 Case-Control Ethiopia 240 CYP2B6 c. 983T>C plasma 0(')3132' ?5;/"5?
> 11210 0.
Tamiru Tadesse efawren_z
concentrations
75 Xianmin Meng 2015 Cohort China 322 Associated
with lower
-1.18; 95% ClI
76 Yalle Elizabeth | 2022 | Prospective India 369 CYP2B6 c. 15582C>T plasma 100to f 36
efavirenz . "
Kurlan concentrations
Associated
with lower
-1.67;95% CI
CYP2B6 c. 18492C>T pla§ma 14510 -1.88
efavirenz
concentrations
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c. 1295- -~ 0.20; 95% CI
CYP2B6 913G>A not significant -1.10to0 1.50
- -0.01; 95% CI
CYP2B6 c. 1375A>G not significant 12810 1.26
I 0.22; 95% CI
CYP2B6 c. 1459C>T not significant 10810 1.52
c. - -0.07; 95% CI
CYP2B6 171+4335T>C not significant 13210 1.19
Lo 0.27;95% ClI
CYP2B6 c. 526 G>T not significant 1.05t0 1.59
. 0.09; 95% ClI
CYP2B6 C.*1355A>G not significant 1.15t01.33
- -0.12; 95% CI
CYP2B6 c. 1172T>A not significant 1.4710 1.23
I 0.24; 95% CI
CYP2B6 c. 136 A>G not significant 10710 155
- -0.03; 95% CI
CYP2B6 c. 415G>A not significant 1.29t0 1.23
I 0.17; 95% CI
CYP3A4 ¢. 392A>G not significant 113t0 1.47
- -0.08; 95% CI
CYP3A4 c.878T>C not significant -1.3410 1.19
- 0.26; 95% ClI
CYP3A5 c. 31611C>T not significant 10410 1.56
L 0.10; 95% ClI
CYP3A5 c. 6986A>G not significant 11410 1.34
- -0.13; 95% CI
CYP3A5 c. 713G>A not significant 1.4910 1.23
L 0.23; 95% CI
CYP3A5 c. 14690G>A not significant 1.09 to 1.55
- -0.04; 95% CI
MDR1 c. 2677G>T not significant -1.30t0 1.22
L 0.16; 95% CI
NR112 c. 7635A>G not significant 11410 1.46
. 0.20; 95% ClI
NR1I3 c. 1089T>C not significant 0.95t0 1.35
- -0.15; 95% CI
NR1I3 c. 8784T>C not significant 11010 0.80
L 0.05; 95% ClI
PXR . 63396C>T not significant -0.7510 0.85
- -0.30; 95% CI
SLCO1B1 ¢.388A>G not significant 1.2510 0.65
L 0.12; 95% CI
SLCO1B1 ¢.521T>C not significant 0.88 10 1.12
- -0.25; 95% CI
SULT1A1 C.638G>A not significant 1.2010 0.70
Associated
with lower .
UGT2B7 c. 735A>G plasma 11%% tisffﬂ
efavirenz ’ '
concentrations
Associated
with lower - 950
UGT287 c. 802T>C plasma PR
efavirenz ' '
concentrations
- 0.18; 95% ClI
UGT2B7 c.-327G>A not significant -0.82 10 1.18
- -0.22; 95% CI
UGT2B7 c.-161C>T not significant 117100.73
- 0.08; 95% Cl
UGT2B7 c.211G>T not significant 08710 1.03
- -0.10; 95% CI
UGT2B7 c.372A>G not significant -1.0510 0.85
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